EconPapers    
Economics at your fingertips  
 

Treatment of Wastewater from a Grass Carp Pond with Multiple-Batch Forward Osmosis by Using Sucrose as a Draw Solution

Yuliang Xu, Xia Cheng and Jianghui Du ()
Additional contact information
Yuliang Xu: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
Xia Cheng: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
Jianghui Du: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

Sustainability, 2022, vol. 14, issue 16, 1-17

Abstract: Forward osmosis (FO), a green and economical membrane technology driven by a natural concentration gradient, has attracted increasing attention for wastewater treatment because it consumes less energy and removes large amounts of pollutants. In this research, an approach based on an FO mechanism that could improve the concentration of organic pollutants in wastewater collected from grass carp ponds was proposed. The wastewater serving as a feed solution (FS) was concentrated by FO, and sucrose was used as a draw solution (DS). The multiple chemical oxygen demand (COD) variation, the water flux, and the reverse solute flux during the FO process were investigated. The results indicated that the water flux and the reverse solute flux had similar trends in the processing of batch experiments 1–8, and the concentrating multiple of organic contaminants reached a maximum of 3.5 in the whole study. In addition, membrane fouling was studied via a scanning electron microscope (SEM), and a loose cake layer was deposited on the membrane surface. Moreover, findings from energy dispersive scanning (EDS) analysis showed that the fouling substances in the support layer of the membrane were mainly organic compounds and silica. In contrast, the dominant contaminants of the active layer contained several microelements (such as K and Ca) in addition to organic compounds. Three-dimensional (3D) fluorescence analysis confirmed that the FS components could enter the DS and the chemical components of the sucrose solution could also enter the FS. The findings of this study provide a new view on selecting a DS and protecting the aquaculture environment.

Keywords: forward osmosis; aquaculture wastewater; draw solution; sucrose solution; membrane fouling; multiple batches (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/16/10329/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/16/10329/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:16:p:10329-:d:892539

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10329-:d:892539