EconPapers    
Economics at your fingertips  
 

AISAR: Artificial Intelligence-Based Student Assessment and Recommendation System for E-Learning in Big Data

Wala Bagunaid (), Naveen Chilamkurti and Prakash Veeraraghavan
Additional contact information
Wala Bagunaid: Computer Science and Information Technology, La Trobe University, Bundoora, VIC 3086, Australia
Naveen Chilamkurti: Computer Science and Information Technology, La Trobe University, Bundoora, VIC 3086, Australia
Prakash Veeraraghavan: Computer Science and Information Technology, La Trobe University, Bundoora, VIC 3086, Australia

Sustainability, 2022, vol. 14, issue 17, 1-22

Abstract: Educational systems have advanced with the use of electronic learning (e-learning), which is a promising solution for long-distance learners. Students who engage in e-learning can access tests and exams online, making education more flexible and accessible. This work reports on the design of an e-learning system that makes recommendations to students to improve their learning. This artificial intelligence-based student assessment and recommendation (AISAR) system consists of score estimation, clustering, performance prediction, and recommendation. In addition, the importance of student authentication is recognised in situations in which students must authenticate themselves prior to using the e-learning system using their identity, password, and personal identification number. Individual scores are determined using a recurrent neural network (RNN) based on student engagement and examination scores. Then, a density-based spatial clustering algorithm (DBSCAN) using Mahalanobis distance clustering is implemented to group students based on their obtained score values. The constructed clusters are validated by estimating purity and entropy. Student performance is predicted using a threshold-based MapReduce (TMR) procedure from the score-based cluster. When predicting student performance, students are classified into two groups: average and poor, with the former being divided into below- and above-average students and the latter into poor and very poor students. This categorisation aims to provide useful recommendations for learning. A recommendation reinforcement learning algorithm, the rule-based state–action–reward–state–action (R-SARSA) algorithm, is incorporated for evaluation. Students were required to work on their subjects according to the provided recommendations. This e-learning recommendation system achieves better performance in terms of true-positives, false-positives, true-negatives, false-negatives, precision, recall, and accuracy.

Keywords: artificial intelligence; clustering; map-reduce; recommendation system; student assessment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/17/10551/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/17/10551/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:17:p:10551-:d:896388

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10551-:d:896388