Research on High-Quality Development Evaluation, Space–Time Characteristics and Driving Factors of China’s Construction Industry under Carbon Emission Constraints
Yan Wang and
Xi Wu ()
Additional contact information
Yan Wang: College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China
Xi Wu: Shaanxi Provincial Department of Housing and Urban Rural Development, Xi’an 710004, China
Sustainability, 2022, vol. 14, issue 17, 1-19
Abstract:
Research on the regional difference characteristics and driving mechanisms of high-quality developmental evaluations of the construction industry under the constraint of carbon emissions has important practical significance for guiding the efficient development of the construction industry, alleviating the contradiction between economic and social development and resource conservation, low-carbon requirements in the process of rapid urbanization, and realizing regional coordinated development. Taking carbon emissions as unexpected output into the evaluation system of high-quality development of construction industry, this paper studies the spatial–temporal differentiation characteristics, dynamic trend evolution and its driving factors of high-quality development of China’s construction industry from 2006 to 2021 by using the SE-SBM model of unexpected output, GML index analysis and grey correlation model. The research results show that: (1) from 2006 to 2021, the high-quality development of the construction industry generally fluctuated in a sinusoidal function pattern, and the high-quality development level of the construction industry in China was improved as a whole. It is manifested in the coexistence of regional imbalance and spatial correlation. High-efficiency provinces are concentrated in the eastern coastal areas, forming an obvious cluster effect; however, the radiation-driving effect is weak. (2) The regional difference in technological scale change is the largest, which is the main reason for the difference in regional total factor production growth rate; the contribution of technological progress to the difference in total factor growth rate is also relatively large. Generally speaking, technological factors are the key to reducing the difference of total factor growth rate between regions. (3) Urbanization level, carbon emission constraints, government regulation, scientific and technological R & D investment and industrial structure upgrading are the main driving factors that affect the spatiotemporal differentiation and evolution of high-quality development of the construction industry.
Keywords: high-quality development evaluation; carbon emission constraints; construction; driver factors (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/17/10729/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/17/10729/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:17:p:10729-:d:900437
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().