EconPapers    
Economics at your fingertips  
 

A Conflict Measures-Based Extreme Value Theory Approach to Predicting Truck Collisions and Identifying High-Risk Scenes on Two-Lane Rural Highways

Zhaoshi Geng, Xiaofeng Ji (), Rui Cao, Mengyuan Lu and Wenwen Qin
Additional contact information
Zhaoshi Geng: School of Traffic Engineering, Kunming University of Science and Technology, Kunming 650500, China
Xiaofeng Ji: School of Traffic Engineering, Kunming University of Science and Technology, Kunming 650500, China
Rui Cao: School of Traffic Engineering, Kunming University of Science and Technology, Kunming 650500, China
Mengyuan Lu: School of Traffic Engineering, Kunming University of Science and Technology, Kunming 650500, China
Wenwen Qin: School of Traffic Engineering, Kunming University of Science and Technology, Kunming 650500, China

Sustainability, 2022, vol. 14, issue 18, 1-24

Abstract: Collision risk identification and prediction is an effective means to prevent truck accidents. However, most existing studies focus only on highways, not on two-lane rural highways. To predict truck collision probabilities and identify high-risk scenes on two-lane rural highways, this study first calculated time to collision and post-encroachment time using high-precision trajectory data and combined them with extreme value theory to predict the truck collision probability. Subsequently, a traffic feature parameter system was constructed with the driving behavior risk parameter. Furthermore, machine learning algorithms were used to identify critical feature parameters that affect truck collision risk. Eventually, extreme value theory based on time to collision and post-encroachment time incorporated a machine learning algorithm to identify high-risk truck driving scenes. The experiments showed that bivariate extreme value theory integrates the applicability of time to collision and post-encroachment time for different driving trajectories of trucks, resulting in significantly better prediction performances than univariate extreme value theory. Additionally, the horizontal curve radius has the most critical impact on truck collision; when a truck is driving on two-lane rural highways with a horizontal curve radius of 227 m or less, the frequency and probability of collision will be higher, and deceleration devices and central guardrail barriers can be installed to reduce risk. Second is the driving behavior risk: the driving behavior of truck drivers on two-lane rural highways has high-risk, and we recommend the installation of speed cameras on two-lane rural roads to control the driving speed of trucks and thus avoid dangerous driving behaviors. This study extends the evaluation method of truck collisions on two-lane rural highways from univariate to bivariate and provides a basis for the design of two-lane rural highways and the development of real-time dynamic warning systems and enforcement for trucks, which will help prevent and control truck collisions and alleviate safety problems on two-lane rural highways.

Keywords: road safety; truck collisions; extreme value theory; risk identification; traffic conflict measures; two-lane rural highways (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/18/11212/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/18/11212/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:18:p:11212-:d:909102

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11212-:d:909102