EconPapers    
Economics at your fingertips  
 

Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA)

Giacomo Medici () and Jeff B. Langman
Additional contact information
Giacomo Medici: Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
Jeff B. Langman: Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID 83844, USA

Sustainability, 2022, vol. 14, issue 18, 1-15

Abstract: Aquifer recharge is one of the most important hydrologic parameters for understanding available groundwater volumes and making sustainable the use of natural water by minimizing groundwater mining. In this framework, we reviewed and evaluated the efficacy of multiple methods to determine recharge in a flood basalt terrain that is restrictive to infiltration and percolation. In the South Fork of the Columbia River Plateau, recent research involving hydrologic tracers and groundwater modeling has revealed a snowmelt-dominated system. Here, recharge is occurring along the intersection of mountain-front alluvial systems and the extensive Miocene flood basalt layers that form a fractured basalt and interbedded sediment aquifer system. The most recent groundwater flow model of the basin was based on a large physio-chemical dataset acquired in laterally and vertically distinctive locations that refined the understanding of the intersection of the margin alluvium and the spatially variable basalt flows that filled the basin. Modelled effective recharge of 25 and 105 mm/year appears appropriate for the basin’s plain and the mountain front, respectively. These values refine previous efforts on quantifying aquifer recharge based on Darcy’s law, one-dimensional infiltration, zero-flux plane, chloride, storage, and mass-balance methods. Overall, the combination of isotopic hydrochemical data acquired in three dimensions and flow modelling efforts were needed to simultaneously determine groundwater dynamics, recharge pathways, and appropriate model parameter values in a primarily basalt terrain. This holistic approach to understanding recharge has assisted in conceptualizing the aquifer for resource managers that have struggled to understand aquifer dynamics and sustainable withdrawals.

Keywords: aquifer recharge; sustainability water resources; groundwater isotopes; groundwater flow modelling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/18/11349/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/18/11349/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:18:p:11349-:d:911485

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11349-:d:911485