EconPapers    
Economics at your fingertips  
 

Indigenous Nutrient Supplying Capacity of Young Alluvial Calcareous Soils Favours the Sustainable Productivity of Hybrid Rice and Maize Crops

Shiveshwar Pratap Singh (), Sudarshan Dutta (), Shankar Jha, Shiv Shankar Prasad, Sanjay Kumar Chaudhary, Madhab Chandra Manna, Kaushik Majumdar, Prashant Srivastava, Pothula Srinivasa Brahmanand, Krishna Singh and Krishna Kumar ()
Additional contact information
Shiveshwar Pratap Singh: Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, Bihar, India
Sudarshan Dutta: Kosher Climate India (P) Ltd., Bangaluru 560102, Karnataka, India
Shankar Jha: Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, Bihar, India
Shiv Shankar Prasad: Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, Bihar, India
Sanjay Kumar Chaudhary: Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, Bihar, India
Madhab Chandra Manna: Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, Bihar, India
Kaushik Majumdar: African Plant Nutrition Institute, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
Prashant Srivastava: Commonwealth Scientific and Industrial Research Organization (CSIRO) Land and Water, Urrbrae, SA 5064, Australia
Pothula Srinivasa Brahmanand: Directorate of Research, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, Bihar, India
Krishna Kumar: Pt. Deen Dayal Upadhyay College of Horticulture and Forestry, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, Bihar, India

Sustainability, 2022, vol. 14, issue 18, 1-18

Abstract: The crop productivity in calcareous soils is low due to their low organic matter content, high pH levels and improper nutrient management without considering the indigenous nutrient supplying capacity and crop yield potential; therefore, this study was conducted for a quantitative assessment of the nutrient supplying capacity of a calcareous soil on the productivity of hybrid and conventional rice and maize crops using an omission plot technique. The treatments included the ample application of Nitrogen (N), Phosphorus (P), Potassium (K), Sulphur (S) and Zinc (Zn), and an unfertilized check and omissions of N, P, K, S and Zn in rice and maize for six cropping seasons. The impact of the nutrient omission towards crop productivity was highest for nitrogen followed by phosphorous, potassium, zinc and sulphur. The total grain yield (3 yr average) in the hybrid rice–maize system was highest (16.32 t ha −1 ) for the optimum fertilized plot and lowest (6.34 t ha −1 ) for the unfertilized check. The sustainable yield index indicated that hybrid and conventional rice-maize cropping systems were more sustainable in the amply fertilized plot than in the nutrient-limited and unfertilized treatment plots. The average percent contributions of nitrogen, phosphorous, and potassium from the soil towards total nutrient removal were 36, 80 and 137 kg ha −1 , in the hybrid system and 24, 54 and 104 kg ha −1 in the conventional system, respectively. The return on investment (ROI) of the N, P, K, S and Zn for the hybrid rice was 21.2, 7.1, 6.7, 4.1, and 0.3 USD, respectively, while for the maize it was 28.8, 7.6, 4.9, 6.5, and 0.7 USD, respectively. The results suggest that there is a direct link between the soil nutrient supplying capacity and the nutrient requirements by different types of crops in calcareous soil; therefore, the omission plot technique used for the assessment of the indigenous nutrient supplying capacity could be used in the larger domain for improved nutrient management, through synchronization with a targeted crop yield for improved productivity, soil fertility, nutrient use efficiency and farm income.

Keywords: calcareous soils; omission plot technique; return on investment; nutrient supplying capacity (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/18/11585/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/18/11585/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:18:p:11585-:d:915942

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-30
Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11585-:d:915942