EconPapers    
Economics at your fingertips  
 

Research on Financial Early Warning Based on Combination Forecasting Model

Jin Kuang, Tse-Chen Chang and Chia-Wei Chu ()
Additional contact information
Jin Kuang: School of International Business, Zhejiang International Studies University, Hangzhou 310023, China
Tse-Chen Chang: School of Tourism Management, Sun Yat-sen University, Zhuhai 528406, China
Chia-Wei Chu: Faculty of Data Science, City University, Macau SAR, China

Sustainability, 2022, vol. 14, issue 19, 1-16

Abstract: Since entering the 21st century, “economic globalization” has become a hot topic. Under the impact of “economic globalization”, the competition of the Chinese domestic market continues to intensify, and Chinese enterprises are facing enormous pressure for survival and development. Among them, there are many cases of poor business operation caused by financial crisis which have directly put these companies in trouble, even causing them to go bankrupt. Therefore, it is very practical to establish a scientific data model to analyze and predict the financial data of enterprises. It can not only monitor the financial status of the enterprise in real time, but also play an effective financial early warning role. This research focuses on using the combined forecasting method to establish a more comprehensive financial early warning model to solve the related financial crisis forecasting problem. Specifically, two different forecasting methods are first adopted in this study to conduct financial early warning research. The first is time series forecasting. It is a dynamic data processing statistical method, which is often used in forecasting research in the business field. The second is the BP neural network algorithm (referred to as BP), which is an error back-propagation learning algorithm, which is often used in the field of artificial intelligence. Then, the prediction error values of the two methods are compared and they are applied to the combined prediction method. Finally, a new error prediction formula is obtained. The result shows that the BP method provides the best performance over others, while the combinational forecasting method offers better performance than any single method.

Keywords: financial early warning; time series; back propagation; combined forecasting model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12046/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12046/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12046-:d:923472

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12046-:d:923472