Durability Assessment Method of Hollow Thin-Walled Bridge Piers under Rockfall Impact Based on Damage Response Surface
Fei Li (),
Yikang Liu and
Jian Yang
Additional contact information
Fei Li: College of Civil Engineering, Longdong University, Qingyang 745000, China
Yikang Liu: School of Civil Engineering, Central South University, Changsha 410075, China
Jian Yang: School of Civil Engineering, Central South University, Changsha 410075, China
Sustainability, 2022, vol. 14, issue 19, 1-24
Abstract:
Continuous rigid-frame bridges across valleys are often at risk of rockfalls caused by heavy rainfalls, earthquakes, and debris flow in a mountainous environment. Hollow thin-walled bridge piers (HTWBP) in valleys are exposed to the threat of impact from accidental rockfalls. In the current research, ANSYS/LS-DYNA is used to establish a high-precision rockfall-HTWBP model. The rockfall-HTWBP model is verified against a scaled impact test performed in previously published research. A mesh independence test is also performed to obtain an appropriate mesh size. Based on the rockfall-HTWBP model, the impact force, damage, and dynamic response characteristics of HTWBP under a rockfall impact are studied. In addition, a damage assessment criterion is proposed, based on the response surface model, combined with the central composite design method and Box–Behnken design method. The main conclusions are as follows: (1) the impact force of the rockfall has a substantial impulse characteristic, and the duration of the impulse load is approximately 0.01 s. (2) The impacted surface of the pier is dominated by the final elliptic damage, with conical and strip damage areas as the symmetry axis. The cross-sectional damage mode is from compression failure in the impact area and shear failure at the corner. (3) The maximum displacement occurs in the middle height of the pier. The maximum displacement increases with impact height, impact velocity, and rockfall diameter and decreases with the uniaxial compressive strength of the concrete. (4) The initial impact velocity and diameter of the rockfall are the most significant parameters affecting the damage indices. In addition, a damage assessment method, with a damage zoning diagram based on the response surface method, is established for the fast assessment of the damage level of impacted HTWBP.
Keywords: rockfall impact; impact resistance; hollow thin-walled bridge pier; response surface model; durability assessment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12196/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12196/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12196-:d:925697
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().