The Impact of Street Tree Height on PM2.5 Concentration in Street Canyons: A Simulation Study
Junyou Liu,
Bohong Zheng (),
Yanfen Xiang and
Jia Fan
Additional contact information
Junyou Liu: School of Architecture and Art, Central South University, Changsha 410083, China
Bohong Zheng: School of Architecture and Art, Central South University, Changsha 410083, China
Yanfen Xiang: School of Architecture and Art, Central South University, Changsha 410083, China
Jia Fan: School of Architecture and Art, Central South University, Changsha 410083, China
Sustainability, 2022, vol. 14, issue 19, 1-17
Abstract:
With the rapid development of cities and the rapid increase in automobile ownership, traffic has become one of the main sources of PM2.5 pollution, which can be reduced by road greening through sedimentation, blocking, adhesion, and absorption. Using the method of combining field monitoring and ENVI-met simulation, the influence of the tree height on the PM2.5 concentration on both sides of the city streets was discussed. The influence of tree height on PM2.5 under five conditions was analyzed, including 10 m tall trees (i), 15 m tall trees (ii), alternating distribution of 15 and 10 m tall trees (iii), 5 m tall trees (iv), no trees on either side of the road (v). The results show that: Roadside trees can increase the concentration of PM2.5 in the narrow space of street canyons. However, without roadside trees, PM2.5 from traffic sources is not reduced in time, it is more easily spread to the distance. When the height of the roadside trees is 5 m and their crown widths are smaller than those of other trees, there is a relatively wide space between them. Compared with the higher roadside tree models with larger crown widths, the concentration of PM2.5 on the roadway and the downwind sidewalk is relatively low. In the three models (i–iii) with tree height above or equal to 10 m, the PM2.5 concentration around the trees do not show regular change with the change in tree height. Due to the tree height of 10 and 15 m, the crown width is large enough, and the alternate distribution of tree height of 15 and 10 m fails to make the PM2.5 concentration in the models lower than the models with tree height of 15 m or 10 m. The reasonable height of roadside trees in street canyons helps improve the wind circulation to promote the diffusion of PM2.5 pollution. There is no optimal height of roadside trees for PM2.5 pollution in street canyons, thus it is necessary to select the height reasonably according to the specific situation.
Keywords: PM2.5; street canyon; street tree; tree height; deposition and sedimentation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12378/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12378/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12378-:d:928657
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().