EconPapers    
Economics at your fingertips  
 

Effect of Revegetation in Extremely Degraded Grassland on Carbon Density in Alpine Permafrost Regions

Yinglan Jia, Shengyun Chen () and Peijie Wei
Additional contact information
Yinglan Jia: Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Shengyun Chen: Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Peijie Wei: Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Sustainability, 2022, vol. 14, issue 19, 1-14

Abstract: Revegetation has been proposed as an effective approach to restoring the extremely degraded grassland in the Qinghai–Tibetan Plateau (QTP). However, little is known about the effect of revegetation on ecosystem carbon density (ECD), especially in alpine permafrost regions. We compared aboveground biomass carbon density (ABCD), belowground biomass carbon density (BBCD), soil organic carbon density (SOCD), and ECD in intact alpine meadow, extremely degraded, and revegetated grasslands, as well as their influencing factors. Our results indicated that (1) ABCD, BBCD, SOCD, and ECD were significantly lower in extremely degraded grassland than in intact alpine meadow; (2) ABCD, SOCD, and ECD in revegetated grassland significantly increased by 93.46%, 16.88%, and 19.22%, respectively; (3) stepwise regression indicated that BBCD was mainly influenced by soil special gravity, and SOCD and ECD were controlled by freeze–thaw strength and soil temperature, respectively. This study provides a comprehensive survey of ECD and basic data for assessing ecosystem service functions in revegetated grassland of the alpine permafrost regions in the QTP.

Keywords: extremely degraded grassland; revegetated grassland; ecosystem carbon density; alpine permafrost regions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12575/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12575/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12575-:d:932409

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12575-:d:932409