EconPapers    
Economics at your fingertips  
 

Gaussian Process Regression Based Multi-Objective Bayesian Optimization for Power System Design

Nicolai Palm, Markus Landerer and Herbert Palm ()
Additional contact information
Nicolai Palm: Systems Engineering Laboratory, University of Applied Sciences, Lothstrasse 64, 80335 München, Germany
Markus Landerer: Systems Engineering Laboratory, University of Applied Sciences, Lothstrasse 64, 80335 München, Germany
Herbert Palm: Systems Engineering Laboratory, University of Applied Sciences, Lothstrasse 64, 80335 München, Germany

Sustainability, 2022, vol. 14, issue 19, 1-23

Abstract: Within a disruptively changing environment, design of power systems becomes a complex task. Meeting multi-criteria requirements with increasing degrees of freedom in design and simultaneously decreasing technical expertise strengthens the need for multi-objective optimization (MOO) making use of algorithms and virtual prototyping. In this context, we present Gaussian Process Regression based Multi-Objective Bayesian Optimization (GPR-MOBO) with special emphasis on its profound theoretical background. A detailed mathematical framework is provided to derive a GPR-MOBO computer implementable algorithm. We quantify GPR-MOBO effectiveness and efficiency by hypervolume and the number of required computationally expensive simulations to identify Pareto-optimal design solutions, respectively. For validation purposes, we benchmark our GPR-MOBO implementation based on a mathematical test function with analytically known Pareto front and compare results to those of well-known algorithms NSGA-II and pure Latin Hyper Cube Sampling. To rule out effects of randomness, we include statistical evaluations. GPR-MOBO turnes out as an effective and efficient approach with superior character versus state-of-the art approaches and increasing value-add when simulations are computationally expensive and the number of design degrees of freedom is high. Finally, we provide an example of GPR-MOBO based power system design and optimization that demonstrates both the methodology itself and its performance benefits.

Keywords: power system design; multi-objective optimization; gaussian process regression; Bayesian Optimization; expected hypervolume improvement; squared exponential kernel (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12777/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12777/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12777-:d:935522

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12777-:d:935522