EconPapers    
Economics at your fingertips  
 

Optimal Operational Planning of RES and HESS in Smart Grids Considering Demand Response and DSTATCOM Functionality of the Interfacing Inverters

Abdelfatah Ali (), Mostafa F. Shaaban and Hatem F. Sindi
Additional contact information
Abdelfatah Ali: Department of Electrical Engineering, South Valley University, Qena 83523, Egypt
Mostafa F. Shaaban: Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
Hatem F. Sindi: Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Sustainability, 2022, vol. 14, issue 20, 1-21

Abstract: With countries moving toward renewable energy sources (RES), the need for dispatchability and storage solutions has become more prevalent. The uncertainty associated with wind turbine (WT) units and photovoltaic (PV) systems further complex a system with a high level of intermittency. This work addresses this problem by proposing an operational planning approach to determine the optimal allocation of WT units, PV systems, and hybrid energy storage systems (HESS) in smart grids. The proposed approach considers the uncertainties of the RES and load demand, price-based demand response, and distribution static compensator (DSTATCOM) functionality of the RES interfacing inverters. The operational planning problem is divided into two subcategories: (1) optimal long-term planning and (2) optimal operation. In the first problem, probabilistic models of RES and load reflect on the sizes and locations of the used RES and storage technologies. This allocation is further optimized via the optimal operation of the smart grid. The proposed operational planning approach is formulated as a nested optimization problem that guarantees the optimal planning and operation of the RES and HESS simultaneously. This approach is tested on the IEEE 33-bus distribution system and solved using meta-heuristic and mathematical algorithms. The effectiveness of the proposed approach is demonstrated using a set of case studies. The results demonstrate that the proposed approach optimally allocates the RES and HESS with a 30.4% cost reduction and 19% voltage profile improvement.

Keywords: distribution systems; demand response; energy storage; renewable energy sources; smart grids (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/20/13209/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/20/13209/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:20:p:13209-:d:942344

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13209-:d:942344