EconPapers    
Economics at your fingertips  
 

A Transformer-Based Machine Learning Approach for Sustainable E-Waste Management: A Comparative Policy Analysis between the Swiss and Canadian Systems

Saidia Ali and Farid Shirazi ()
Additional contact information
Saidia Ali: Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
Farid Shirazi: Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Sustainability, 2022, vol. 14, issue 20, 1-22

Abstract: Efficient e-waste management is crucial to successfully achieve sustainable urban growth universally. The upsurge in e-waste has resulted in countries, including Canada, adopting a wide array of policies associated with sustainable management. In this study, we conducted a mixed-method analysis of Canadian e-waste management policies to showcase the opportunities and limitations of the current system. We examine and compare the effectiveness of electronic waste management strategies in Canada and Switzerland using a comparative policy evaluation and by quantitatively measuring their efficiencies through two efficiency methods, namely a transformer-based, bidirectional, unsupervised machine learning model for natural language processing (NLP) and data envelopment analysis (DEA). Switzerland is utilized as a comparison case due to its robust legal framework that has been in place for proper management e-waste in order to enhance Canada’s electronic waste management system. The policy considerations presented in this study are directed toward urban planners, policy makers, and corporate strategists. These involve a mix of political, economic, social, and environmental planning tools concerning how to communicate and foster competent e-waste management in these countries. This is the first study to incorporate DEA and NLP-based BERT analysis to identify the most efficient policy deployment concerning e-waste management.

Keywords: e-waste; sustainability; extended producer responsibility; recycler qualification program; CO 2 emission; data envelopment analysis; natural language processing; machine learning; BERT (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/20/13220/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/20/13220/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:20:p:13220-:d:942517

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13220-:d:942517