Path Planning of Electric VTOL UAV Considering Minimum Energy Consumption in Urban Areas
Yafei Li () and
Minghuan Liu
Additional contact information
Yafei Li: School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
Minghuan Liu: School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
Sustainability, 2022, vol. 14, issue 20, 1-23
Abstract:
As a new mode of transportation in the future, electric vertical take-off and landing unmanned aerial vehicles (eVTOL UAV) can undertake the task of logistics distribution and carry people in urban areas. It is challenging to carry out research designed to plan the path of eVTOL UAVs which can have a safe and sustainable operation mode in urban areas. Therefore, this work proposes a method for planning an obstacle-free path for eVTOL UAVs in urban areas with the goal of minimizing energy consumption. It aims to improve the safety and sustainability of eVTOL UAV operations. Based on variations of air density with height, a more accurate formula for calculating battery energy consumption of eVTOL UAV is derived. It is used in the vertical takeoff and landing phase and horizontal flight phase, respectively. Considering the influence of buildings on eVTOL UAV operation, a path planning method applicable to complex urban environments is proposed. The safe nodes of eVTOL UAV flight are obtained by using Voronoi diagrams based on building locations. Then, the complete shortest and obstacle-free path is obtained by using a Dubins geometric path and Floyd algorithm. After obtaining the obstacle-free paths for all flight height zones, the battery energy consumption of the eVTOL UAV in each flight height zone is calculated. Then, the flight height with the minimum energy consumption is obtained. The simulation results show that the path length obtained by the proposed path planning method is shorter than that obtained by particle swarm optimization; the total battery energy consumption changes in the same pattern in the low-altitude areas and high-altitude areas; the difference between the maximum and minimum energy consumption in the small area enables the eVTOL UAV to cover about 350 m more, and about 420 m more in the large area. Therefore, in future high-frequency UAV mission flights, choosing the altitude with the lowest energy consumption can reduce UAV operator costs. It can also significantly increase UAV transport range and make UAVs operate more sustainably.
Keywords: air mobility; eVTOL UAV; path planning; minimum energy consumption; urban areas; flight height (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/20/13421/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/20/13421/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:20:p:13421-:d:945799
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().