EconPapers    
Economics at your fingertips  
 

Effect of Mooring Parameters on Dynamic Responses of a Semi-Submersible Floating Offshore Wind Turbine

Baolong Liu and Jianxing Yu ()
Additional contact information
Baolong Liu: State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300354, China
Jianxing Yu: State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300354, China

Sustainability, 2022, vol. 14, issue 21, 1-18

Abstract: Based on a new semi-submersible floating offshore wind turbine (FOWT), a coupling aero-hydro-flexible model was established to study its dynamic behaviors, as well as the corresponding mooring system, under complicated sea scenarios. The aerodynamic load, the wave load, the current load, and the mooring load were taken into consideration. To further investigate the influence of the mooring parameters on the floating system, the diameter and the total length of mooring lines, which are the most critical parameters in mooring line design, were chosen to be analyzed. Particularly, five diameters and seven lengths were adopted to establish the FOWT mooring system, and a time-domain simulation was carried out for each cases. Based on the numerical simulations, their influences on the mooring system stiffness and the dynamic responses of FOWT were studied. The results show that the diameter has little influence on the static shape of the mooring line. The mooring system stiffness can be effectively increased by reducing the length and increasing the diameter of mooring lines. Moreover, the surge motion of floating foundation can be effectively controlled by increasing the mooring line diameter and decreasing mooring line length under the rated sea scenario. From this aspect, the dynamic response features of the FOWTs could be improved.

Keywords: mooring system; dynamic response; floating offshore wind turbine; semi-submersible platform (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/21/14012/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/21/14012/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:21:p:14012-:d:955409

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14012-:d:955409