EconPapers    
Economics at your fingertips  
 

Detection Method for All Types of Traffic Conflicts in Work Zones

Zhepu Xu () and Dashan Chen
Additional contact information
Zhepu Xu: Department of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
Dashan Chen: Department of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China

Sustainability, 2022, vol. 14, issue 21, 1-21

Abstract: Traffic conflict technology (TCT) is widely used to assess the safety of work zones. The current TCT is temporal and (or) spatial proximity defined based, which can only detect two-vehicle or multi-vehicle conflicts, and is not competent for single-vehicle conflicts. However, single-vehicle accidents in work zones are also severe. This study proposes a detection method for all types of traffic conflicts in work zones. Based on vehicle micro-behavior data, evasive behavior is detected by automatic segmentation, Support Vector Machine (SVM)-based behavior identification, and threshold-based judgment methods. Two-vehicle or multi-vehicle conflicts are detected by classical proximity defined-based method, i.e., the surrogate safety assessment model (SSAM). By comparing the analysis results of the evasive behavior with the one of SSAM, single-vehicle conflicts can be detected. Taking a practical work zone as an example, the effectiveness of this method in detecting all types of traffic conflicts in work zones is verified. The single-vehicle conflict can be subdivided into 10 types according to basic behavior types, such as straight-line driving and decelerating. The two or multi-vehicle conflicts can be subdivided into three types, such as rear-end conflict. The example also verifies the applicability of this method under different traffic volume scenarios.

Keywords: traffic conflict; safety assessment; work zone; surrogate safety assessment model (SSAM); evasive behavior; traffic conflict technology (TCT) (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/21/14159/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/21/14159/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:21:p:14159-:d:957958

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14159-:d:957958