EconPapers    
Economics at your fingertips  
 

A Study on the Propagation Trend of Underground Coal Fires Based on Night-Time Thermal Infrared Remote Sensing Technology

Xiaomin Du, Dongqi Sun, Feng Li () and Jing Tong
Additional contact information
Xiaomin Du: China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Dongqi Sun: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Feng Li: School of Ecological Environment, Institute of Disaster Prevention, Sanhe 065201, China
Jing Tong: China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China

Sustainability, 2022, vol. 14, issue 22, 1-13

Abstract: Underground coal fires in coal fields endanger the mine surface ecological environment, endanger coal resources, threaten mine safety and workers’ health, and cause geological disasters. The study of methods by which to monitor the laws that determine the way underground coal fires spread is helpful in the safe production of coal and the smooth execution of fire extinguishing projects. Based on night-time ASTER thermal infrared images of 2002, 2003, 2005 and 2007 in Huangbaici and Wuhushan mining areas in the Wuda coalfield, an adaptive-edge-threshold algorithm was used to extract time-series for underground coal fire areas. A method of time-series dynamic analysis for geometric centers of underground coal fire areas was proposed to study the propagation law and development trend of underground coal fires. The results indicate that, due to the effective prevention of the external influences of solar irradiance, topographic relief and land cover, the identification accuracy of coal fires via the use of a night-time ASTER thermal infrared image was higher by 7.70%, 13.19% and 14.51% than that of the daytime Landsat thermal infrared image in terms of producer accuracy, user accuracy and overall accuracy, respectively. The propagation direction of the geometric center of the time-series coal fire areas can be used to represent the propagation direction of underground coal fires. There exists a linear regression relationship between the migration distance of the geometric center of coal fire areas and the variable-area of coal fires in adjacent years, with the correlation coefficient reaching 0.705, which indicates that the migration distance of the geometric center of a coal fire area can be used to represent the intensity variation of underground coal fires. This method can be applied to the analysis of the trends of underground coal fires under both natural conditions and human intervention. The experimental results show that the Wuda underground coal fires spread to the southeast and that the area of the coal fires increased by 0.71 km 2 during the period of 2002–2003. From 2003 to 2005, Wuda’s underground coal fires spread to the northwest under natural conditions, and the area of coal fires decreased by 0.30 km 2 due to the closure of some small coal mines. From 2005 to 2007, due to increased mining activities, underground coal fires in Wuda spread to the east, south, west and north, and the area of coal fires increased dramatically by 1.76 km 2 .

Keywords: night-time thermal infrared; ASTER; underground coal fires; propagation trend; geometric center (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/22/14741/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/22/14741/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:22:p:14741-:d:967223

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14741-:d:967223