Experimental Study on the Effect of Gas Adsorption and Desorption on Ultrasonic Velocity and Elastic Mechanical Parameters of Coal
Gang Xu (),
Jiawei Liu,
Yunlong Wang,
Hongwei Jin and
Chaofeng Wang
Additional contact information
Gang Xu: College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Jiawei Liu: College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Yunlong Wang: College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Hongwei Jin: College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Chaofeng Wang: Xin’an Coal Mine, Henan Dayou Energy Co., Ltd., Luoyang 471842, China
Sustainability, 2022, vol. 14, issue 22, 1-16
Abstract:
The rapid and accurate identification of the physical characteristics of coal by means of ultrasonic detection is of great significance to ensure safe mining of coal and efficient development of coal seam methane. In this paper, the ultrasonic velocity testing experiments of coal during gas adsorption and desorption were carried out, utilizing a low frequency petrophysical measurement device with primary and fractured coal as the research objects. The variations in the elastic mechanical parameters and ultrasonic velocity of coal samples were analyzed to elucidate the influence mechanism that gas adsorption and desorption have on them. During gas adsorption and desorption, the longitudinal wave velocity of the primary structure coal varies from 1990 m/s to 2200 m/s, and the transverse wave velocity varies from 1075 m/s to 1160 m/s, while the longitudinal wave velocity of the fractured structure coal varies from 1540 m/s to 1950 m/s, and the transverse wave velocity varies from 800 m/s to 1000 m/s. The elastic modulus and wave velocities, in both directions of the primary structural coal, were higher than those of the fractured structural coal. In comparison to the fractured structural coal, the main structural coal had a lower Poisson’s ratio. In addition, the spread of the elastic mechanical parameters and wave velocities, in both the longitudinal and transverse directions, was more pronounced in the fracture−structured coal than in the primary−structured coal. During gas adsorption and desorption, the speed of the coal’s longitudinal waves increased, and then decreased, due to the combined effect of gas adsorption expansion and pore gas pressure compression matrix effect. For this experiment, the maximum longitudinal wave velocity of the coal occurred at a gas pressure of 1.5 MPa. Primary structural coal has a longitudinal wave speed of 2103 m/s, whereas fragmented structural coal has a speed of 1925 m/s. The variation in the shear wave velocity of the coal is controlled only by the gas adsorption expansion effects. The shear wave velocity increases during gas adsorption and decreases during gas desorption. With the change of gas pressure, the longitudinal wave velocity can increase by 23.34%, and the shear wave velocity can increase by 17.97%. Coal undergoes changes to both its Poisson’s ratio and elastic modulus as a result of gas adsorption and desorption; these modifications are analogous to the velocity of longitudinal and shear waves, respectively.
Keywords: gas adsorption; gas desorption; ultrasonic velocity; elastic mechanical parameters; coal; porosity (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/22/15055/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/22/15055/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:22:p:15055-:d:972335
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().