Monthly Wind Power Forecasting: Integrated Model Based on Grey Model and Machine Learning
Xiaohui Gao ()
Additional contact information
Xiaohui Gao: School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Sustainability, 2022, vol. 14, issue 22, 1-14
Abstract:
Wind power generation has been developed rapidly due to rising global interest in renewable clean energy sources. Accurate prediction of the potential amount of such energy is of great significance to energy development. As wind changes greatly by season, time series analysis is considered as a natural approach to characterize the seasonal fluctuation and exponential growth. In this paper, a dual integrated hybrid model is presented by using random forest (RF) to incorporate the extreme gradient boosting (XGB) with empirical mode decomposition (EMD) and a fractional order accumulation seasonal grey model (FSGM). For seasonal fluctuation in vertical dimension processing, the time series is decomposed into high and low frequency components. Then, high and low frequency components are predicted by XGB and extreme learning machine (ELM), respectively. For the exponential growth in horizontal dimension processing, the FSGM is applied in the same month in different years. Consequently, the proposed model can not only be used to capture the exponential growth trend but also investigate the complex high-frequency variation. To validate the model, it is applied to analyze the characteristics of wind power time series for China from 2010 to 2020, and the analysis results from the model are compared with popularly known models; the results illustrate that the proposed model is superior to other models in examining the characteristics of the wind power time series.
Keywords: wind power generation; empirical mode decomposition; extreme gradient boosting; grey model; integrated model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/22/15403/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/22/15403/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:22:p:15403-:d:977986
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().