EconPapers    
Economics at your fingertips  
 

Vegetative Growth Dynamic and Its Impact on the Flowering Intensity of the Following Season Depend on Water Availability and Bearing Status of the Olive Tree

Sofiene B. M. Hammami (), Manel Ben Laya, Narjes Baazaoui and Besma Sghaier-Hammami ()
Additional contact information
Sofiene B. M. Hammami: Laboratoire des Sciences Horticoles (LR13AGR01), Institut National Agronomique de Tunisie, Université de Carthage, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
Manel Ben Laya: Laboratoire des Sciences Horticoles (LR13AGR01), Institut National Agronomique de Tunisie, Université de Carthage, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
Narjes Baazaoui: Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
Besma Sghaier-Hammami: Département Santé Végétale et Environnement, Institut National Agronomique de Tunisie, Université de Carthage, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia

Sustainability, 2022, vol. 14, issue 23, 1-19

Abstract: A sufficient and mature vegetative growth is an essential condition for production in the following season and consequently affects the alternate bearing (AB) behavior. However, little is known about its interaction with the crop load and water supply. Herein, we studied the effect of different water regimes and bearing status on the vegetative intensity and flush and its consequence on the flowering parameters of the following season. Rainfed (RF) and fully irrigated (FI) treatments were applied for bearing (ON) and non-bearing (OFF) trees of the ‘Zalmati’ olive orchard in south Tunisia during 2018. The water deficit condition (RF) and the high crop load (ON) have caused a similar decrease in the total node number and shoots length by about 65%. Furthermore, the flowering parameters in 2019, especially the percentage of floral buds (i.e., floral induction intensity), were differentially affected by water supply according to the bearing status of the previous season. FI reduced the percentage of floral buds in 2019 by about 37% for OFF trees, while it increased it by more than four times for the ON trees. Concerning the growth flush, the second (i.e., autumnal) flush seems to respond better to water supply than the first (i.e., spring) one, for both vegetative and flowering parameters. The second flush of growth provided 28% of the total vegetative growth but contributed about 35% to the total number of floral buds for RF OFF trees. Besides, FI makes the first and the second flushes contribute equally to total vegetative growth and to the flowering parameters of the following season. On the other hand, the bearing status of the trees does not affect the contribution of each flush to the total vegetative growth.

Keywords: Olea europaea; water deficit; alternate bearing; year ON and OFF; flower bud induction; spring and autumnal growth flushes (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/15614/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/15614/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:15614-:d:982696

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15614-:d:982696