EconPapers    
Economics at your fingertips  
 

Methodology of Designing Sealing Systems for Highly Loaded Rotary Machines

Zidong Yu, Serhii Shevchenko, Mykola Radchenko (), Oleksandr Shevchenko and Andrii Radchenko
Additional contact information
Zidong Yu: School of Energy and Power, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212003, China
Serhii Shevchenko: Pukhov Institute for Modelling in Energy Engineering, General Naumov Str. 15, 03164 Kyiv, Ukraine
Mykola Radchenko: Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue, 9, 54025 Mykolayiv, Ukraine
Oleksandr Shevchenko: Department of Ecology and Environmental Protection Technologies, Sumy State University, Rymskogo-Korsakova St. 2, 40007 Sumy, Ukraine
Andrii Radchenko: Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue, 9, 54025 Mykolayiv, Ukraine

Sustainability, 2022, vol. 14, issue 23, 1-17

Abstract: Higher parameters of centrifugal machines are constantly required, such as the pressure of the medium to be sealed and the speed of rotation of the shaft. However, as the parameters increase, it becomes more and more difficult to ensure the effectiveness of sealing. In addition, sealing systems affect the overall safety of equipment operation, especially vibration. In order to harmonize the sealing functions and increase the dynamic rigidity of the rotors of centrifugal machines, a method for modeling complex sealing systems has been developed. Non-contact seals are considered as hydrostatic–dynamic bearings that can effectively dampen rotor oscillations. A general approach to the analysis of non-contact seals as automatic control systems and an algorithm for constructing their dynamic characteristics at the design stage were proposed for the first time. Models of “rotor-gap seal”, impulse seal and “rotor–hydraulic face” systems, and seal-supports of a shaftless pump have been studied to assess the effect of these seal systems on the oscillatory characteristics of the rotor. Analytical dependencies are obtained for calculating the dynamic characteristics and stability limits of seals as hydromechanical systems. The directions for improving the safety of operation of critical pumping equipment due to a targeted increase in the rigidity of non-contact seals are determined, which leads to an increase in the vibration resistance of the rotor and the environ-mental safety of centrifugal machines. The paper proposes a method for designing sealing systems based on the configuration of sealing components in order to achieve harmonization between sealing and vibration reliability, taking into account oscillatory processes due to hydrodynamic sealing characteristics.

Keywords: gар seals; impulse seal; hydraulic face; seal-supports; model; vibrations; frequency characteristics; environmental safety (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/15828/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/15828/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:15828-:d:986546

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-18
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15828-:d:986546