EconPapers    
Economics at your fingertips  
 

Economic and Experimental Assessment of KCOOH Hybrid Liquid Desiccant-Vapor Compression System

Kashish Kumar () and Alok Singh
Additional contact information
Kashish Kumar: Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India
Alok Singh: Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India

Sustainability, 2022, vol. 14, issue 23, 1-25

Abstract: A liquid desiccant dehumidification cooling system is a promising, energy-saving, high-efficiency, environmentally friendly technology that maintains thermal comfort effectively indoors by utilizing renewable energy sources or waste heat to enhance system efficiency. In this research, a small-scale (6 kW cooling capacity) hybrid liquid desiccant air-conditioning system (HLDAC) is proposed to evaluate the dehumidification performance of a non-corrosive potassium formate (KCOOH) solution. For this, four input parameters, namely, inlet air flow rate, inlet desiccant temperature, inlet desiccant concentration, and inlet specific air humidity, were selected. Moreover, the different combinations of experiments were designed by employing response surface methodology (RSM) to evaluate the dehumidification performance parameters, namely, dehumidifier latent heat load, coefficient of performance of hybrid system, and moisture removal rate (MRR). Further, a comparative performance analysis between the hybrid system and a standalone vapor compression system (VCS) unit was carried out. The result showed a remarkable increase in coefficient of performance, which was observed at about 28.48% over the standalone VCS unit. Furthermore, the economic assessment of the proposed hybrid system is presented in this paper. Finally, from the economic analysis, it was concluded that the hybrid system had a payback time of 2.65 years compared to the VCS unit.

Keywords: hybrid energy-efficient system; vapor compression refrigeration; dehumidification performance; energy conservation; payback period (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/15917/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/15917/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:15917-:d:987921

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15917-:d:987921