EconPapers    
Economics at your fingertips  
 

PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model

Wenchao Ban and Liangduo Shen ()
Additional contact information
Wenchao Ban: School of Ocean Engineering Equipment, Zhejiang Ocean University, Zhoushan 316000, China
Liangduo Shen: School of Ocean Engineering Equipment, Zhejiang Ocean University, Zhoushan 316000, China

Sustainability, 2022, vol. 14, issue 23, 1-15

Abstract: The current serious air pollution problem has become a closely investigated topic in people’s daily lives. If we want to provide a reasonable basis for haze prevention, then the prediction of PM2.5 concentrations becomes a crucial task. However, it is difficult to complete the task of PM2.5 concentration prediction using a single model; therefore, to address this problem, this paper proposes a fully adaptive noise ensemble empirical modal decomposition (CEEMDAN) algorithm combined with deep learning hybrid models. Firstly, the CEEMDAN algorithm was used to decompose the PM2.5 timeseries data into different modal components. Then long short-term memory (LSTM), a backpropagation (BP) neural network, a differential integrated moving average autoregressive model (ARIMA), and a support vector machine (SVM) were applied to each modal component. Lastly, the best prediction results of each component were superimposed and summed to obtain the final prediction results. The PM2.5 data of Hangzhou in recent years were substituted into the model for testing, which was compared with eight models, namely, LSTM, ARIMA, BP, SVM, CEEMDAN–ARIMA, CEEMDAN–LSTM, CEEMDAN–SVM, and CEEMDAN–BP. The results show that for the coupled CEEMDAN–LSTM–BP–ARIMA model, the prediction ability was better than all the other models, and the timeseries decomposition data of PM2.5 had their own characteristics. The data with different characteristics were predicted separately using appropriate models and the final combined model results obtained were the most satisfactory.

Keywords: timeseries data; PM2.5 concentration prediction; CEEMDAN–LSTM–BP–ARIMA coupling model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/16128/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/16128/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:16128-:d:992023

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16128-:d:992023