EconPapers    
Economics at your fingertips  
 

The Characteristics of Net Anthropogenic Nitrogen and Phosphorus Inputs (NANI/NAPI) and TN/TP Export Fluxes in the Guangdong Section of the Pearl River (Zhujiang) Basin

Yang Bai, Chengqian Sun, Li Wang, Yang Wu (), Jiaman Qin and Xi Zhang ()
Additional contact information
Yang Bai: Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
Chengqian Sun: National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
Li Wang: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Yang Wu: National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
Jiaman Qin: National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
Xi Zhang: Academy of Agricultural Planning and Engineering, MARA, Beijing 100125, China

Sustainability, 2022, vol. 14, issue 23, 1-16

Abstract: Human activities have greatly influenced the inputs and cycling pathways of nitrogen (N) and phosphorus (P), causing dramatic environmental problems in the Pearl River Basin. In this study, the characteristics of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI) were analyzed in the Guangdong section of the Pearl River Basin from 2016 to 2020. NANI showed a very slight decrease trend from (1.51 ± 0.09) × 10 4 to (1.36 ± 0.08) × 10 4 kg·N·km −2 ·yr −1 , while the average intensity of NAPI was 3.8 × 10 3 kg·P·km −2 ·yr −1 . Both NANI and NAPI intensities were at high levels, resulting in the serious deterioration of water quality in the Pearl River Basin. Fertilizer input was the most important component for the intensities of NANI and NAPI, accounting for 38–42% and 53–56%. However, in the Pearl River Delta, the major components of NANI and NAPI were the human and animal consumption (food/feed) inputs and non-food net phosphorus input. The input of NANI and NAPI should be controlled for different areas, based on the differing driving forces, to alleviate the deterioration of water quality. This study of NANI and NAPI in the Pearl River Basin is one of the important prerequisites for clarifying the input and water quality, providing support for further effective control of nitrogen and phosphorus pollution in the Pearl River.

Keywords: net anthropogenic nitrogen input; net anthropogenic phosphorus input; flux; Pearl River (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/16166/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/16166/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:16166-:d:992689

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16166-:d:992689