EconPapers    
Economics at your fingertips  
 

A Surface Crack Damage Evaluation Method Based on Kernel Density Estimation for UAV Images

Yusheng Liang, Fan Zhang, Kun Yang and Zhenqi Hu ()
Additional contact information
Yusheng Liang: School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
Fan Zhang: School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
Kun Yang: School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
Zhenqi Hu: School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Sustainability, 2022, vol. 14, issue 23, 1-17

Abstract: The development of UAV (unmanned aerial vehicle) technology provides an ideal data source for the information extraction of surface cracks, which can be used for efficient, fast, and easy access to surface damage in mining areas. Understanding how to effectively assess the degree of development of surface cracks is a prerequisite for the reasonable development of crack management measures. However, there are still no studies that have carried out a reasonable assessment of the damage level of cracks. Given this, this article proposes a surface crack damage evaluation method based on kernel density estimation for UAV images. Firstly, the surface crack information from the UAV images is quickly and efficiently obtained based on a machine learning method, and the kernel density estimation method is used to calculate the crack density. The crack nuclear density is then used as a grading index to classify the damage degree of the study area into three levels: light damage, moderate damage, and severe damage. It is found that the proposed method can effectively extract the surface crack information in the study area with an accuracy of 0.89. The estimated bandwidth of the crack kernel density was determined to be 3 m based on existing studies on the effects of surface cracks on soil physicochemical properties and vegetation. The maximum crack density value in the study area was 316.956. The surface damage area due to cracks was 14376.75 m 2 . The damage grading criteria for surface cracks in the study area (light: 0–60; moderate: 60–150; severe: >150) were determined based on the samples selected from the field survey by crack management experts. The percentages of light, moderate, and severe damage areas were 72.77%, 23.22%, and 4.01%, respectively. The method proposed in this article can effectively realize the graded damage evaluation of surface cracks and provide effective data support for the management of surface cracks in mining areas.

Keywords: UAV; surface crack; nuclear density estimation; damage evaluation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/16238/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/16238/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:16238-:d:994197

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16238-:d:994197