EconPapers    
Economics at your fingertips  
 

An Investigation on the Potential of Cellulose for Soil Stabilization

Evangelin Ramani Sujatha () and Govindarajan Kannan
Additional contact information
Evangelin Ramani Sujatha: Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed to Be University, Thanjavur 613401, Tamil Nadu, India
Govindarajan Kannan: School of Civil Engineering, SASTRA Deemed to Be University, Thanjavur 613401, Tamil Nadu, India

Sustainability, 2022, vol. 14, issue 23, 1-15

Abstract: The construction industry remains a significant contributor to global carbon emissions. Several sustainable alternatives have emerged to overcome this issue in geotechnical engineering. In this study, cellulose, an abundant biopolymer, is investigated for its potential to modify geotechnical properties favourably. Sodium carboxymethyl cellulose (NaCMC) is an anionic ether derivative of natural cellulose with good binding and moisture-retaining capacity. Experimental investigations were conducted on organic silt stabilized with 0.25% to 1.00% NaCMC, and the results indicate that unconfined compression strength (UCS) increased by 76.7% with 0.5% NaCMC treated soil after 28 days. Hydraulic conductivity (HC) of the 0.5% NaCMC treated soil decreased by 91.7% after 28 days, and the additives suppressed the compression index of the soil by 50%. The California bearing ratio (CBR) test indicated that the additive improved the subgrade strength by 33.2%, improving it from very poor to a fair sub-grade material. Microstructural analysis using a scanning electron microscope (SEM) and chemical investigation using x-ray diffraction (XRD) indicates that NaCMC’s interaction with soil did not form any new chemical compounds. However, the viscous nature of the material formed fibrous threads that bind the soil to enhance the geotechnical properties, establishing itself as a prominent stabilizer for ground improvement applications.

Keywords: cellulose; organic silt; unconfined compression strength; hydraulic conductivity; California bearing ratio (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/16277/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/16277/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:16277-:d:994950

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16277-:d:994950