Influence of Type of Sleeper–Ballast Interface on the Shear Behaviour of Railway Ballast: An Experimental and Numerical Study
Sinniah Karuppiah Navaratnarajah (),
Henpita Gamage Sushan Mayuranga and
Somasundaraiyer Venuja
Additional contact information
Sinniah Karuppiah Navaratnarajah: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
Henpita Gamage Sushan Mayuranga: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
Somasundaraiyer Venuja: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
Sustainability, 2022, vol. 14, issue 24, 1-18
Abstract:
The shear resistance at the sleeper–ballast interface of a ballasted track is an important contributor in maintaining track stability under faster and heavier axle loads where the ballast undergoes significant lateral sliding. Different types of sleeper–ballast interfaces based on the type of sleeper arrangements, such as concrete sleepers, timber sleepers, and under sleeper pads (USPs) attached to the concrete sleepers influence the lateral stability of railway tracks. Therefore, in this study the shear and degradation behaviour of ballast at concrete–ballast, timber–ballast, and USP–ballast interfaces were examined in the laboratory using large-scale direct shear tests under 60 kPa normal stress. The use of waste materials in the construction of civil infrastructure is gaining a lot of interest in the engineering community. Therefore, in addition to commercial USPs manufactured using raw materials, recycled USPs manufactured from granulates of end-of-life rubber tyres were also tested in this study. The discrete element modelling (DEM) approach was used to predict the shear behaviour of ballast at 30, 90, 120, 150, and 180 kPa normal stresses. The bonded particle model (BPM) was adopted in the DEM to simulate the effects of particle breakage during shearing. The results exhibited that both commercial and recycled USPs significantly improve the shear resistance at the sleeper–ballast interface while reducing particle degradation compared to concrete and timber sleeper interfaces.
Keywords: rail transportation; ballast; under sleeper pad; recycled tyre waste; interfaces; large-scale testing; shear resistance; discrete element model; bonded particle model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/24/16384/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/24/16384/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:24:p:16384-:d:996574
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().