A Review of Recycling Methods for Fibre Reinforced Polymer Composites
Jawed Qureshi ()
Additional contact information
Jawed Qureshi: School of Architecture, Computing and Engineering (ACE), University of East London, 4-6 University Way, Beckton, London E16 2RD, UK
Sustainability, 2022, vol. 14, issue 24, 1-22
Abstract:
This paper presents a review of waste disposal methods for fibre reinforced polymer (FRP) materials. The methods range from waste minimisation, repurposing, reusing, recycling, incineration, and co-processing in a cement plant to dumping in a landfill. Their strength, limitations, and key points of attention are discussed. Both glass and carbon fibre reinforced polymer (GFRP and CFRP) waste management strategies are critically reviewed. The energy demand and cost of FRP waste disposal routes are also discussed. Landfill and co-incineration are the most common and cheapest techniques to discard FRP scrap. Three main recycling pathways, including mechanical, thermal, and chemical recycling, are reviewed. Chemical recycling is the most energy-intensive and costly route. Mechanical recycling is only suitable for GFRP waste, and it has actually been used at an industrial scale by GFRP manufacturers. Chemical and thermal recycling routes are more appropriate for reclaiming carbon fibres from CFRP, where the value of reclaimed fibres is more than the cost of the recycling process. Discarding FRP waste in a sustainable manner presents a major challenge in a circular economy. With strict legislation on landfill and other environmental limits, recycling, reusing, and repurposing FRP composites will be at the forefront of sustainable waste-management strategies in the future.
Keywords: FRP Recycling; glass fibre; carbon fibre; FRP waste; waste management; circular economy; sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/24/16855/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/24/16855/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:24:p:16855-:d:1004574
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().