EconPapers    
Economics at your fingertips  
 

Assessing the Environmental Footprint of Distiller-Dried Grains with Soluble Diet as a Substitute for Standard Corn–Soybean for Swine Production in the United States of America

Md Ariful Haque, Zifei Liu, Akinbile Demilade and Nallapaneni Manoj Kumar
Additional contact information
Md Ariful Haque: School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
Zifei Liu: Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
Akinbile Demilade: Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
Nallapaneni Manoj Kumar: School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong

Sustainability, 2022, vol. 14, issue 3, 1-16

Abstract: The swine diet formulation in the United States of America (U.S.A.) is entering a new era of decision making to promote low-carbon pork production systems. As a part of the decision-making process, the precision nutrition approaches to customize diet and alternative feeding options that are economically viable and environmentally sustainable are given priority. Hence, the objective of this study is to identify an alternative diet over a standard corn–soybean meal diet. The byproducts from the supply chain of human food and biofuels, i.e., distiller-dried grain with solubles (DDGS), are chosen as an alternative option to formulate a swine diet. First, two alternative byproduct diets with low and high DDGS inclusion (10.1% and 28.8%, respectively) were formulated using the least-cost technique. Second, a life cycle inventory was created, followed by data collection from the key sources, including DATA SMART-2017, USDA, RIA-GREET 2018, and the relevant literature. Third, in SimaPro 8.5.2.0 (PRé Sustainability: LE Amersfoort, The Netherlands), the ReCiPe 2016, the midpoint method by economic allocation was used to investigate the environmental footprint of the formulated diets to inform sustainability decisions of swine-farm managers. The considered functional unit is the ‘lb diet’, and the system boundary is the farm gate that considers only the feed production stage. The observed results include global warming potential, land use, water consumption, fossil resources scarcity, and terrestrial ecotoxicity. The comparative results of a 28.8% DDGS diet over the standard corn–soybean meal diet for the displacement ratio of 0.69 show an approximate global warming potential saving of 0.04 kg CO 2 eq. per lb DDGS feed at the feed production stage. Moreover, the DDGS displacement ratio of 0.69 does not significantly impact water consumption and fossil resources; however, it can reduce land use by 26% and terrestrial ecotoxicity by 8% compared to the standard diet. Overall, the quantified environmental footprint results of the byproduct DDGS diets indicate that the footprints of DDGS diets were lower than the standard diet.

Keywords: DDGS; alternative diet for swine; byproduct diet; global warming potential; standard corn–soybean meal (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/3/1161/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/3/1161/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:3:p:1161-:d:729233

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1161-:d:729233