EconPapers    
Economics at your fingertips  
 

Towards a More Sustainable Urban Food System—Carbon Emissions Assessment of a Diet Transition with the FEWprint Platform

Nick ten Caat, Martin Tenpierik and Andy van den Dobbelsteen
Additional contact information
Nick ten Caat: Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 BL Delft, The Netherlands
Martin Tenpierik: Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 BL Delft, The Netherlands
Andy van den Dobbelsteen: Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 BL Delft, The Netherlands

Sustainability, 2022, vol. 14, issue 3, 1-29

Abstract: The production, processing, and transportation of food, in particular animal-based products, imposes great environmental burden on the planet. The current food supply system often constitutes a considerable part of the total carbon emissions of urban communities in industrialised cities. Urban food production (UFP) is a method that can potentially diminish food emissions. In parallel, a shift towards a predominantly plant-based diet that meets the nutritional protein intake is an effective method to curtail carbon emissions from food. Considering the high land use associated with the production of animal-based products, such a shift will prompt a community food demand that is more inclined to be satisfied with local production. Therefore, during the design process of a future low-carbon city, the combined application of both methods is worth exploring. This work introduces, describes, and demonstrates the diet shift component of the FEWprint platform, a user friendly UFP assessment platform for designers that is constructed around the broader three-pronged strategy of evaluation, shift, and design. For three neighborhoods, in Amsterdam, Belfast, and Detroit, the contextual consumption and country-specific environmental footprint data are applied to simulate a theoretical community-wide diet shift from a conventional to a vegan diet, whilst maintaining protein intake equilibrium. The results show that in total terms, the largest carbon mitigation potential awaits in Detroit (−916 kg CO 2 eq/cap/year), followed by Belfast (−866 kg) and Amsterdam (−509 kg). In relative terms, the carbon reduction potential is largest in Belfast (−25%), followed by Amsterdam (−15%) and Detroit (−7%). The FEWprint can be used to generate preliminary figures on the carbon implications of dietary adaptations and can be employed to give a first indication of the potential of UFP in urban communities.

Keywords: diet assessment; carbon accounting; sustainable cities; FEW nexus; diet transition; sustainable urban planning; protein intake; CO 2 emissions; plant-based diet (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/3/1797/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/3/1797/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:3:p:1797-:d:742239

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1797-:d:742239