Multiple Melting Temperatures in Glass-Forming Melts
Robert F. Tournier and
Michael I. Ojovan
Additional contact information
Robert F. Tournier: UPR 3228 Centre National de la Recherche Scientifique, Laboratoire National des Champs Magnétiques Intenses, European Magnetic Field Laboratory, Institut National des Sciences Appliquées de Toulouse, Université Grenoble Alpes, F-31400 Toulouse, France
Michael I. Ojovan: Department of Materials, Imperial College London, London SW7 2AZ, UK
Sustainability, 2022, vol. 14, issue 4, 1-18
Abstract:
All materials are vitrified by fast quenching even monoatomic substances. Second melting temperatures accompanied by weak exothermic or endothermic heat are often observed at T n+ after remelting them above the equilibrium thermodynamic melting transition at T m . These temperatures, T n+ , are due to the breaking of bonds (configurons formation) or antibonds depending on the thermal history, which is explained by using a nonclassical nucleation equation. Their multiple existence in monoatomic elements is now demonstrated by molecular dynamics simulations and still predicted. Proposed equations show that crystallization enthalpy is reduced at the temperature T x due to new vitrification of noncrystallized parts and their melting at T n+ . These glassy parts, being equal above T x to singular values or to their sum, are melted at various temperatures T n+ and attain 100% in Cu 46 Zr 46 Al 8 and 86.7% in bismuth. These first order transitions at T n+ are either reversible or irreversible, depending on the formation of super atoms, either solid or liquid.
Keywords: metallic glasses; melting temperatures; liquid–liquid transitions; chemical bonds; vitrification; crystallization; first order transitions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/4/2351/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/4/2351/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:4:p:2351-:d:752963
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().