EconPapers    
Economics at your fingertips  
 

Optimal Process Network for Integrated Solid Waste Management in Davao City, Philippines

Kristin Faye Olalo, Jun Nakatani and Tsuyoshi Fujita
Additional contact information
Kristin Faye Olalo: Department of Urban Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Jun Nakatani: Department of Urban Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Tsuyoshi Fujita: Department of Urban Engineering, The University of Tokyo, Tokyo 113-8656, Japan

Sustainability, 2022, vol. 14, issue 4, 1-18

Abstract: Municipal solid waste management (MSWM) systems in developing countries adopt practices from developed countries to reduce their environmental burdens. However, several complex issues specific to developing countries hinder the full implementation of these practices. The future of MSWM in Davao City, Philippines, is envisaged as a notable example of the combination of new infrastructure and local MSWM practices. A linear programming model was developed, following material flow analysis and life cycle assessment, to design an optimal system for Davao City. The performance of the system was evaluated in terms of greenhouse gas emissions, energy and revenue generated, and the amount of landfill waste. The results show that the proposed system positively affects the environment compared to the current system, due to additional treatment options. However, the main allocation concern transitions from organic waste in the current system to plastic waste in future scenarios. Furthermore, the mitigation of greenhouse gas emissions and the extension of landfill life will be heavily influenced by trade-offs between sorting operations and the management of incinerated wastes with high calorific values. Therefore, plastic-waste-specific treatment options will be critical for future MSWM systems. The results herein underscore the need for sustainable MSWM in the study area, considering the region-specific conditions.

Keywords: greenhouse gases; integrated solid waste management; life cycle assessment; linear programming; material flow analysis; separation rate (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/4/2419/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/4/2419/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:4:p:2419-:d:753874

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2419-:d:753874