EconPapers    
Economics at your fingertips  
 

Assessment of the Mechanisms of Summer Thermal Environment of Waterfront Space in China’s Cold Regions

Fan Fei, Yan Wang and Xiaoyun Jia
Additional contact information
Fan Fei: School of Architecture, Tianjin Chengjian University, Tianjin 300384, China
Yan Wang: School of Architecture, Tianjin Chengjian University, Tianjin 300384, China
Xiaoyun Jia: Dalian Institute of Architectural Design and Research, Dalian 116021, China

Sustainability, 2022, vol. 14, issue 5, 1-23

Abstract: Water is an essential part of the urban ecosystem and plays a vital role in alleviating urban heat island (UHI) problems. The contribution toward UHI mitigation made by bodies of water needs to be ascertained to establish waterfront thermal environment construction standards. In this study, the thermal environment of the waterfront space of Tianjin in the cold regions of China was the research object. Through a survey including 141 valid questionnaires and the field measurement of four typical waterfront spaces in Tianjin, the thermal demand characteristics of recreational use for the waterfront environment and the influence of water on microclimate are discussed, supplemented by results from low-altitude infrared remote sensing technology, which was mainly used to obtain a wider range of infrared thermal images with higher accuracy. To improve the urban heat island effect and the quality of the ecological environment, this paper used outdoor thermal environment simulation software to quantitatively analyze the thermal environmental impact of outdoor public activity spaces around the representative urban body of water and proposes the optimization scheme of the waterfront space’s thermal environment. The results show that, based on the factors of water itself, the most economical water width was 70–80 m, and the cooling effect intensity of water had an essential correlation with the distance between the measured site and the water center. In terms of the environmental factors around the water, when the green lawn of the waterfront space was 12 m and the water shore’s geometric form was S-shaped, this could improve the cooling effect of water significantly. Waterfront activity spaces should focus on thermal comfort on the east and south water shores. It is expected that this study could provide practical implications and useful guidance for the planning and design of urban waterfront space in China’s cold regions.

Keywords: waterfront space; thermal environment; WBGT; low-altitude infrared remote sensing; CFD simulation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/5/2512/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/5/2512/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:5:p:2512-:d:755435

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2512-:d:755435