EconPapers    
Economics at your fingertips  
 

Performance of Fiber-Reinforced Alkali-Activated Mortar with/without Nano Silica and Nano Alumina

Mahmood Hunar Dheyaaldin, Mohammad Ali Mosaberpanah and Radhwan Alzeebaree
Additional contact information
Mahmood Hunar Dheyaaldin: Civil Engineering Department, Cyprus International University, Nicosia 99010, North Cyprus, Turkey
Mohammad Ali Mosaberpanah: Civil Engineering Department, Cyprus International University, Nicosia 99010, North Cyprus, Turkey
Radhwan Alzeebaree: Akre Technical Institute, Duhok Polytechnic University, Duhok 42004, Iraq

Sustainability, 2022, vol. 14, issue 5, 1-24

Abstract: The current study is aimed to evaluate the effect of nanomaterials (nano alumina (NA) and nano silica (NS) on the mechanical and durability performance of fiber-reinforced alkali-activated mortars (FRAAM). Polypropylene fiber (PPF) was added to the binders at 0.5% and 1% of the volume of the alkali-activated mortar (AAM). Design-expert software was used to provide the central composite design (CCD) for mix proportions. This method categorizes variables into three stages. The number of mixes was created and evaluated with varied proportions of variables. The primary binders in this experiment were 50% fly ash (FA) and 50% ground granulated blast slag (GGBS). The alkali-activated solution to binder ratio was 0.5, and the sodium hydroxide (NaOH) concentration was 12 molarity. The sodium silicate to sodium hydroxide ratio was 2.5. The cubic specimens and prisms were evaluated in an ambient atmosphere at 23 + 3 °C room temperature at the ages of 7 and 28 days. The mechanical performance of AAM was indicated through evaluation of the compressive and flexural strength, flowability, and unit weight of the alkali activator mortar. In addition, the durability performance and microstructure analysis were also evaluated. The experiments demonstrated that the AAM without fibers and nanomaterials had a higher flow rate than the other mixtures. However, the flowability of all mixtures was acceptable. The highest compressive strength was deducted through the use of 2% NA and higher flexural tensile strength was obtained for mixtures included 1% NS and 0.5% PPF. The lower water absorption was noted through the combination of 2% nano silica and 1% polypropylene fiber. Whereas, the combination of 2% nano silica, 1% nano alumina, and 0.5% polypropylene fiber had the lower sorptivity. In addition, the microstructure analysis indicated that the nanomaterials significantly improved the matrix and the porosity of the matrix was considerably reduced.

Keywords: alkali-activated mortar; nano alumina; nano silica; polypropylene fiber; mechanical properties; durability; sorptivity; microstructure analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/5/2527/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/5/2527/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:5:p:2527-:d:755822

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2527-:d:755822