Thermal Resistance of 30° Sloped, Enclosed Airspaces Subjected to Upward Heat Flow
Hamed H. Saber and
Ali E. Hajiah
Additional contact information
Hamed H. Saber: Prince Saud Bin Thuniyan Research Center, Mechanical Engineering Department, Jubail University College, Royal Commission for Jubail & Yanbu, P.O. Box 10074, Jubail Industrial City 31961, Saudi Arabia
Ali E. Hajiah: Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
Sustainability, 2022, vol. 14, issue 6, 1-38
Abstract:
Heat transmission across an enclosed space is determined by the type of filling gas, the temperatures and long-wave emissivities of all surfaces that define the space, and the heat flow direction. The ASHRAE Handbook of Fundamentals provides the thermal resistances (R-values) of enclosed airspaces with only five effective emittance values (E) for vertical, horizontal, and 45° airspaces. ASHRAE R-values do not include the case of 30° sloped airspaces. In addition, ASHRAE R-values ignore the impact of the airspace aspect ratio (A) on R-values. However, many previous studies, as well as this study, have shown that A can have a significant effect on the R-value. Previously, correlations were developed for determining the R-values for vertical (90°) airspaces subjected to horizontal heat flow, horizontal (0°) airspaces subjected to up and down heat flow, 45° airspaces subjected to up and down heat flow, and 30° airspaces subjected to downward heat flow. To the authors’ knowledge, no such correlation existed for determining the R-value of 30° airspaces subjected to upward heat flow, which is developed in this paper. The potential increase in R-value by placing a thin layer of varied emittance on both sides in the middle of the airspace was also considered. Architects and building designers can use the developed correlation to compute the R-values of airspaces of various values for A and E and various operating conditions. This correlation along with the previous correlations can be included in the current energy models (e.g., EnergyPlus, ESP-r, DOE, and Design Builder).
Keywords: sustainable building envelope; reflective insulations; enclosed airspace; airspace aspect ratio; low-emittance materials; effective emittance; thermal resistance; R-value correlation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/6/3260/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/6/3260/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:6:p:3260-:d:768527
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().