EconPapers    
Economics at your fingertips  
 

Multiperiod Dynamic Programming Algorithm for Optimizing a Nature Reserve

Chih-Wei Lin, Yu Hong, Weihao Tu and Jinfu Liu
Additional contact information
Chih-Wei Lin: College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Yu Hong: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Weihao Tu: College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Jinfu Liu: College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Sustainability, 2022, vol. 14, issue 6, 1-17

Abstract: Zoning adjustments are a key method of improving the conservation efficiency of a nature reserve. Existing studies typically consider the one-period programming method and ignore dynamic ecological changes during the programming of a nature reserve. In this study, a scientific method for nature reserve (NR) programming, namely the multiperiod dynamic programming (MDP) algorithm, is proposed. The MDP algorithm designs an NR over three periods and does so by using ecological suitability values for each grid area. Ecological suitability values for each period were determined based on existing data on rare aquatic animals with Maxent software and cellular automata (CA). CA were used to determine the actual protection effect and to adjust each period’s ecological suitability values through comparisons with the sites’ surroundings. The maximization of ecological suitability values was used as an objective function; these values were assumed to indicate protection benefits. The objective function of the MDP also includes grid perimeters and numerical minimization for spatial compactness. Moreover, we designed three MDP constraints for the dynamic programming, including base constraints, distinguishing constraints, and multiperiod constraints. In the base and distinguishing constraints, we require a grid square to be a core, buffer, or unselected square, and we require the core and buffer grids to be spatially connected. For the multiperiod constraints, we used virtual points to ensure spatial continuity in different periods while attaining high ecological suitability. Our main contributions are as follows: (1) the novel MDP algorithm combining ecological attributes and multiperiod dynamic planning to optimize NR planning; (2) the use of virtual points to avoid selecting invalid grids and to ensure spatial continuity with significant protection benefits; and (3) the definition of ecological suitability values and use of CA to simulate dynamic changes over the three periods. The results reveal that the MDP algorithm results in a reserve with greater protection benefits than current reserves with superior spatial distribution due to multiperiod programming. The proposed MDP algorithm is a novel method for the scientific optimization and adjustment of nature reserves.

Keywords: dynamic site selection; integer programming; Quanzhou Bay; spatial connectivity; spatial compactness (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/6/3266/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/6/3266/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:6:p:3266-:d:768432

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3266-:d:768432