EconPapers    
Economics at your fingertips  
 

Evaluating Water Fertilizer Coupling on the Variations in Millet Chaff Size during the Late Seventh Century in Northwest China: Morphological and Carbon and Nitrogen Isotopic Evidence from the Chashancun Cemetery

Bingbing Liu, Yongxiu Lu, Yishi Yang, Wenyu Wei and Guoke Chen
Additional contact information
Bingbing Liu: Gansu Provincial Institute of Cultural Relics and Archaeology, Lanzhou 730000, China
Yongxiu Lu: Key Laboratory of Western China’s Environmental System (Ministry of Education), Lanzhou University, Lanzhou 730000, China
Yishi Yang: Gansu Provincial Institute of Cultural Relics and Archaeology, Lanzhou 730000, China
Wenyu Wei: Key Laboratory of Western China’s Environmental System (Ministry of Education), Lanzhou University, Lanzhou 730000, China
Guoke Chen: Gansu Provincial Institute of Cultural Relics and Archaeology, Lanzhou 730000, China

Sustainability, 2022, vol. 14, issue 6, 1-12

Abstract: Stable isotopic analyses of the remains of plants that have been unearthed from archaeological sites are often featured as key indicators of crop cultivation and the living environment. However, systematic archaeobotanical studies have not been applied widely in Chinese historical sites, especially in those from the Tang dynasty. This paper aims to use carbon and nitrogen isotopic analyses to reveal the potential influence of water and fertilizer conditions on the size of millet chaffs that were excavated from the Chashancun cemetery. To achieve this, >3600 uncharred broomcorn and foxtail millet chaff remains were measured. Furthermore, 30 broomcorn millet samples and 30 foxtail millet samples were selected to analyze the carbon and nitrogen isotopes, respectively. The widths and thicknesses of the broomcorn millet chaffs ranged from 1.11 to 2.38 mm and from 0.95 to 2.24 mm, respectively, while those of the foxtail millet chaffs ranged from 0.95 to 1.94 mm and from 0.69 to 1.90 mm, respectively. The δ 13 C and δ 15 N values of the broomcorn millet chaffs ranged from −13.0‰ to −12.0‰ and from 15.7‰ to 17.8‰, respectively, while those of the foxtail millet chaffs ranged from −14.0‰ to −12.9‰ and from 15.7‰ to 18.8‰, respectively. The results show correlations between the millet chaff size and the carbon/nitrogen isotopic values, suggesting that water and fertilizer conditions might have significantly affected millet grain yield during the late seventh century in northwestern China.

Keywords: millet chaffs; grain size; carbon and nitrogen isotopes; water and fertilizer conditions; Hexi Corridor; Tang dynasty (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/6/3581/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/6/3581/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:6:p:3581-:d:774188

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3581-:d:774188