EconPapers    
Economics at your fingertips  
 

Spatiotemporal Variation of Groundwater Extraction Intensity Based on Geostatistics—Set Pair Analysis in Daxing District of Beijing, China

Chen Li, Baohui Men and Shiyang Yin
Additional contact information
Chen Li: College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
Baohui Men: College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
Shiyang Yin: College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China

Sustainability, 2022, vol. 14, issue 7, 1-17

Abstract: In this paper, the authors studied the impact of human activities on the groundwater environment to reduce the impacts such activities for sustainable groundwater use. The authors took the monthly water table depth data of 32 long-term observation wells in the Daxing District of Beijing from 1986 to 2016 as samples. The authors used seven interpolation methods in the statistics module of ArcGIS by comparing the average error (ME) and root mean square error (RMSE) between the measured and predicted values so that the authors can select the best interpolation method. Using the geostatistical variogram model variation, the authors analyzed the nugget effect through time in the study area. On the basis of the set pair analysis, the main factors causing the increase in groundwater exploitation intensity were quantitatively evaluated and identified. The results were as follows. (1) After comparing the simulation accuracy of the seven interpolation methods for water table depth, ordinary Kriging interpolation was selected as the best interpolation model for the study area. (2) The spatial correlation of the water table depth gradually weakened, and the nugget effect from 2006 to 2016 was 25.92% (>25%). The data indicated that human groundwater exploitation activities from 2006 to 2016 greatly influenced the spatial correlation of the water table depth. (3) The average mining intensity of groundwater from 2006 to 2016 was medium (Level II), and a bleak gradual deterioration trend was observed. The evaluation results of the subtraction set pair potentials in 2010 and 2013, the years of key regulation of groundwater exploitation intensity, are partial negative potential and negative potential, respectively. In 2010, three indicators had partial negative potential: industrial product, tertiary industry product, and irrigated field area. In 2013, five indicators were in negative potential: irrigated area, vegetable area, facility agricultural area, fruit tree area, and the number of wells. Herein, the spatial and temporal variations in the water table depth of the study area are analyzed using a geostatistical method. Moreover, the influence of each water part on the groundwater exploitation intensity is further diagnosed and evaluated based on set pair analysis. The obtained results can provide a theoretical and methodological reference for the sustainable utilization of groundwater in regions where groundwater is the main water supply source, providing a basis for industrial regulation policies in the region.

Keywords: geostatistical analysis; water table depth; interpolation model; set pair analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/7/4341/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/7/4341/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:7:p:4341-:d:787895

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4341-:d:787895