EconPapers    
Economics at your fingertips  
 

Improving the Performance of the Reverse Osmosis Process with Fiber Filter and Ultrafiltration: Promoting Municipal Sewage Reclamation and Reuse for Industrial Processes

Shih-Shuo Chan and Jung-Hua Wu
Additional contact information
Shih-Shuo Chan: Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan
Jung-Hua Wu: Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan

Sustainability, 2022, vol. 14, issue 9, 1-19

Abstract: Wastewater reuse presents a promising solution to the growing need for the sustainable use of available water resources. The reclamation of municipal sewage through reverse osmosis can be applied for diverse uses to alleviate chronic water scarcity. In this study, a pilot plant was fabricated to measure the efficiency and the costs that are associated with pretreatment by the fiber filtration and ultrafiltration of secondary effluent from a water resource recovery facility in Taiwan. The results of this dual-membrane process meet the quantity and quality standards for industrial reuse. The pretreatment produced feedwater with a silt density index (SDI 15 ) lower than 4.1, and with average turbidity removal rates of 42.7% (fiber filtration) and 99.2% (ultrafiltration). Following reverse osmosis, a 97.9% rejection of the electrolyte conductivity was achieved in the reclaimed water. The fouling of the membranes was controlled through the application of intensive backwash, chemically enhanced backflushing, and cleaning in place. The proposed system improves the feasibility, reliability, and economy of the dual-membrane process as a tertiary treatment for safe water reuse, and it thereby demonstrates that this technology has reached maturity for the full-scale implementation of sustainable water reuse.

Keywords: municipal sewage reclamation; reverse osmosis; fiber filtration; ultrafiltration; water resource recovery facility; water sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/9/5443/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/9/5443/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:9:p:5443-:d:806948

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5443-:d:806948