EconPapers    
Economics at your fingertips  
 

Prediction of University Patent Transfer Cycle Based on Random Survival Forest

Disha Deng () and Tao Chen
Additional contact information
Disha Deng: School of Management, Wuhan University of Science and Technology, Wuhan 430081, China
Tao Chen: School of Management, Wuhan University of Science and Technology, Wuhan 430081, China

Sustainability, 2022, vol. 15, issue 1, 1-13

Abstract: Taking the invention patents of the C9 League from 2002 to 2020 as samples, a random survival forest model is established to predict the dynamic time-point of patent transfer cycle. By ranking the variables based on importance, it is found that the countries citing, the non-patent citations and the backward citations have significant impacts on the patent transfer cycle. C-index, Brier score and integrated Brier score are used to measure the discrimination and calibration ability of the four different survival models respectively. It is found that the prediction accuracy of the random survival forest model is higher than that of the Cox proportional risk model, Cox model based on lasso penalty and random forest model. In addition, the survival function and cumulative risk function under the random survival forest are adopted to predict and analyze the individual university patent transfer cycle, which shows that the random survival forest model has good prediction performance and is able to help universities as well as enterprises to identify the patent transfer opportunities effectively, thereby shortening the patent transfer cycle and improving the patent transfer efficiency.

Keywords: random survival forest; patent transfer cycle; cox proportional risk model; Cox model based on lasso penalty; random forest model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/1/218/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/1/218/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2022:i:1:p:218-:d:1012553

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:218-:d:1012553