EconPapers    
Economics at your fingertips  
 

Machine Learning-Based Prediction of Elastic Buckling Coefficients on Diagonally Stiffened Plate Subjected to Shear, Bending, and Compression

Yuqing Yang (), Zaigen Mu () and Xiao Ge
Additional contact information
Yuqing Yang: School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Zaigen Mu: School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Xiao Ge: School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

Sustainability, 2023, vol. 15, issue 10, 1-26

Abstract: The buckling mechanism of diagonally stiffened plates under the combined action of shear, bending, and compression is a complex phenomenon that is difficult to describe with simple and clear explicit expressions. Predicting the elastic buckling coefficient accurately is crucial for calculating the buckling load of these plates. Several factors influence the buckling load of diagonally stiffened plates, including the plate’s aspect ratio, the stiffener’s flexural and torsional rigidity, and the in-plane load. Traditional analysis methods rely on fitting a large number of finite element numerical simulations to obtain an empirical formula for the buckling coefficient of stiffened plates under a single load. However, this cannot be applied to diagonally stiffened plates under combined loads. To address these limitations, several machine learning (ML) models were developed using the ML method and the SHAP to predict the buckling coefficient of diagonally stiffened plates. Eight ML models were trained, including decision tree (DT), k-nearest neighbor (K-NN), artificial neural network (ANN), random forest (RF), AdaBoost, LightGBM, XGBoost, and CatBoost. The performance of these models was evaluated and found to be highly accurate in predicting the buckling coefficient of diagonally stiffened plates under combined loading. Among the eight models, XGBoost was found to be the best. Further analysis using the SHAP method revealed that the aspect ratio of the plate is the most important feature influencing the elastic buckling coefficient. This was followed by the combined action ratio, as well as the flexure and torsional rigidity of the stiffener. Based on these findings, it is recommended that the stiffener-to-plate flexural stiffness ratio be greater than 20 and that the stiffener’s torsional-to-flexural stiffness ratio be greater than 0.4. This will improve the elastic buckling coefficient of diagonally stiffened plates and enable them to achieve higher load capacity.

Keywords: diagonally stiffened plates; combined action; elastic buckling coefficient; machine learning; Shapley Additive exPlanations (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/10/7815/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/10/7815/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:10:p:7815-:d:1143600

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7815-:d:1143600