EconPapers    
Economics at your fingertips  
 

Study on Deformation Characteristics of Retaining Structures under Coupled Effects of Deep Excavation and Groundwater Lowering in the Affected Area of Fault Zones

Yungang Niu, Liang Zou, Qiongyi Wang and Fenghai Ma ()
Additional contact information
Yungang Niu: College of Architecture and Engineering, Dalian University, Dalian 116622, China
Liang Zou: Shenzhen Dasheng Surveying Technology Co., Shenzhen 518000, China
Qiongyi Wang: School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China
Fenghai Ma: College of Architecture and Engineering, Dalian University, Dalian 116622, China

Sustainability, 2023, vol. 15, issue 10, 1-21

Abstract: In order to study the deformation characteristics of the retaining structure under the coupled effect of excavation and dewatering in the affected area of fault zones, this paper takes a deep excavation project in the F1322 fault zone influence area in Shenzhen as an example. The research methods of theoretical analysis, numerical simulation and field measurement are used to conduct in-depth research on the deformation of the retaining structure caused by the excavation and dewatering of the foundation pit. The results show that considering the coupled effect of dewatering in the foundation pit, the energy method based on elastic theory is more accurate in solving the deformation of the retaining pile. By comparing and analyzing the theoretical calculation results, numerical analysis results, and field measurement values, we found that the numerical laws of the three are basically the same. Simplified calculations that only consider rotational deformation and ignore the translational deformation of the wall lead to large deviations between the theoretical calculation results and the measured values of the wall bottom deformation. In order to reduce the deviation between numerical results and measured values, the construction of the foundation pit should strictly adopt measures such as “sectional excavation, avoiding peripheral loads, and optimizing construction deployment”, strengthen construction monitoring, and reduce the impact on the deformation of the retaining pile. The maximum deformation growth rate k (Δ S max /Δ) of the retaining pile decreases approximately exponentially with the increase of the structural stiffness parameters ( E and I ) and the embedment ratio within a certain range. The sensitivity analysis of the lateral displacement of the retaining pile to different geological parameters is conducted, and the sensitivity factors of the geological parameters to the deformation of the retaining structure are obtained, namely the maximum internal friction angle, followed by the cohesion, and the elastic modulus is the smallest. Based on the original design plan, an optimization of the excavation design is proposed by reducing the stiffness of the support structure. Therefore, the research findings in this paper have significant theoretical and practical implications for the engineering design of excavation projects located in fault zones. By optimizing the excavation support system, not only can standardized construction procedures be achieved, but also investment costs can be reduced, and construction time shortened, which fully aligns with the current safety, economic, and sustainable design principles of excavation projects aiming to conserve resources.

Keywords: fault zone influence area; coupled effect; retaining structure deformation; sensitivity analysis; optimized design (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/10/8060/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/10/8060/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:10:p:8060-:d:1147648

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8060-:d:1147648