EconPapers    
Economics at your fingertips  
 

Determinants of Aboveground Carbon Storage of Woody Vegetation in an Urban–Rural Transect in Shanghai, China

Yanyan Wei, Chi-Yung Jim, Jun Gao () and Min Zhao ()
Additional contact information
Yanyan Wei: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
Chi-Yung Jim: Department of Social Sciences, Education University of Hong Kong, Lo Ping Road, Tai Po, Hong Kong, China
Jun Gao: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
Min Zhao: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China

Sustainability, 2023, vol. 15, issue 11, 1-14

Abstract: Carbon storage of urban woody vegetation is crucial for climate change mitigation. Biomass structure and species composition have been shown to be important determinants of carbon storage in woody vegetation. In this study, allometric equations were used to estimate the aboveground carbon storage of urban woody vegetation along an urban–rural transect in Shanghai. A random forest model was developed to evaluate the importance scores and influence of species diversity, canopy cover, species evenness, and tree density on aboveground carbon storage. The results showed that tree density, canopy cover, species diversity, species evenness, and aboveground carbon storage of urban woody vegetation vary with the degree of urbanization and urban–rural environment. In addition, the Bayesian optimization algorithm optimized the random forest model parameters to enhance model accuracy, and good modeling results were demonstrated in the study. The R 2 was at 0.61 in the testing phase and 0.78 in the training phase. The root mean square errors (RMSEs) were 0.84 Mg/ha of carbon in the testing phase and 0.57 Mg/ha in the training phase, which is indicative of a low error of the optimized model. Tree species diversity, canopy cover, species evenness, and tree density were found to correlate with aboveground carbon storage. Tree density was the most important contributor, followed by species diversity and canopy cover, and species evenness was the least effective for aboveground carbon storage. Meanwhile, the results of the partial dependence analysis indicated the combination of factors most conducive to aboveground carbon storage at a tree density of 2200 trees/ha, canopy cover of 50%, species diversity of 1.2, and species evenness of 0.8 in the transect. The findings provided practical recommendations for urban forest managers to adjust the structure and composition of woody vegetation to increase carbon storage capacity and reduce greenhouse gas emissions.

Keywords: aboveground carbon storage; urban-rural transect; random forest model; partial dependency (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/11/8574/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/11/8574/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:11:p:8574-:d:1155397

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-12
Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8574-:d:1155397