Automatic Recognition of Beam Attachment for Massive MIMO System in Densely Distributed Renewable Energy Resources
Alaa Alaerjan ()
Additional contact information
Alaa Alaerjan: College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia
Sustainability, 2023, vol. 15, issue 11, 1-19
Abstract:
Several large-scale and distributed systems such as renewable energy systems (RESs) require ubiquitous and reliable communication. RESs are designed to provide efficient power management and improve both energy production and consumption. Decision making in RESs heavily depends on real-time communication. Fifth and sixth-generation (5G, 6G) wireless networks promise to deliver significant communication advantages to RESs including ultra-low latency, high throughput and improved coverage. However, the communication behavior in RESs is categorized as unpredictable due to aspects such as system flexibility and equipment heterogeneity. This may affect the stability of the entire RES, which results in further issues such as signal reliability and degraded coverage. Therefore, precise identification of user equipment’s (UE) location greatly improves the sustainability of 5G and 6G wireless services. In this work, we propose a novel low-complexity technique to automatically recognize UE locations in an area of interest. The approach aims at providing precise identification of UE with minimum memory and feature requirements. We use the lazy learning approach to build a prediction model to construct beam-attachment maps. We then train the model to provide distributed intelligent models to automatically recognize beam-attachment indexes. We compare the proposed approach with instance-based techniques to measure its ability at predicting beam-attachment maps. The results show that the proposed model has the ability to provide an accurate prediction with respect to the beam-attachment index (around 100%) with minimal complexity.
Keywords: beam attachment; distributed energy systems; network optimization; radio environment map; wireless communication (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/11/8863/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/11/8863/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:11:p:8863-:d:1160528
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().