EconPapers    
Economics at your fingertips  
 

A Brief Insight into the Toxicity Conundrum: Modeling, Measuring, Monitoring and Evaluating Ecotoxicity for Water Quality towards Environmental Sustainability

Paulina Vilela (), Gabriel Jácome, Wladimir Moya, Pouya Ifaei, Sungku Heo and Changkyoo Yoo ()
Additional contact information
Paulina Vilela: ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090112, Ecuador
Gabriel Jácome: Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra EC100150, Ecuador
Wladimir Moya: Laboratorio de Ecología, Departamento de Ciencias Biológicas & Biodiversidad, Universidad de los Lagos, Campus Osorno, Osorno 5290000, Chile
Pouya Ifaei: Integrated Engineering, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
Sungku Heo: Integrated Engineering, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
Changkyoo Yoo: Integrated Engineering, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea

Sustainability, 2023, vol. 15, issue 11, 1-28

Abstract: In view of the continuous increment of industrial residues, the risk associated with chemical toxicity in the environment has piqued the interest of researchers in pursuit of an alternative methodology for mitigating the apparent toxicity of chemicals. Over the past decade, the applicability of toxicity models and the evaluation of the apparent toxicity of chemicals have been examined for achieving sustainability of the environment and improving water quality. The prediction of toxicant effects with reasonable accuracy in organisms of water bodies and other environmental compartments lies in the application of a chemical toxicity model with further risk assessment analysis. This review summarizes well-known and recent advances of modeling techniques to evaluate and monitor toxicity in the environment. Chemical toxicity models such as the individual-based concentration addition (CA), independent action (IA) and whole-mixture-based concentration addition-independent action (CAIA) are considered, as well as their environmental applications, specific case studies, and further research needs towards sustainability. The gap that needs to be overcome in toxicity studies for the environmental sustainability is noted based on the aspects of environmental chemistry and ecotoxicology, sufficient laboratory equipment, data availability and resources for relevant social parameters needed for investigation.

Keywords: environmental sustainability; sustainable water quality; ecotoxicity; toxicity modeling; risk assessment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/11/8881/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/11/8881/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:11:p:8881-:d:1160813

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8881-:d:1160813