Enhancing the Sustainability of Deep-Learning-Based Network Intrusion Detection Classifiers against Adversarial Attacks
Afnan Alotaibi and
Murad A. Rassam ()
Additional contact information
Afnan Alotaibi: Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
Murad A. Rassam: Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
Sustainability, 2023, vol. 15, issue 12, 1-25
Abstract:
An intrusion detection system (IDS) is an effective tool for securing networks and a dependable technique for improving a user’s internet security. It informs the administration whenever strange conduct occurs. An IDS fundamentally depends on the classification of network packets as benign or attack. Moreover, IDSs can achieve better results when built with machine learning (ML)/deep learning (DL) techniques, such as convolutional neural networks (CNNs). However, there is a limitation when building a reliable IDS using ML/DL techniques, which is their vulnerability to adversarial attacks. Such attacks are crafted by attackers to compromise the ML/DL models, which affects their accuracy. Thus, this paper describes the construction of a sustainable IDS based on the CNN technique, and it presents a method for defense against adversarial attacks that enhances the IDS’s accuracy and ensures it is more reliable in performing classification. To achieve this goal, first, two IDS models with a convolutional neural network (CNN) were built to enhance the IDS accuracy. Second, seven adversarial attack scenarios were designed against the aforementioned CNN-based IDS models to test their reliability and efficiency. The experimental results show that the CNN-based IDS models achieved significant increases in the intrusion detection system accuracy of 97.51% and 95.43% compared with the scores before the adversarial scenarios were applied. Furthermore, it was revealed that the adversarial attacks caused the models’ accuracy to significantly decrease from one attack scenario to another. The Auto-PGD and BIM attacks had the strongest effect against the CNN-based IDS models, with accuracy drops of 2.92% and 3.46%, respectively. Third, this research applied the adversarial perturbation elimination with generative adversarial nets (APE_GAN++) defense method to enhance the accuracy of the CNN-based IDS models after they were affected by adversarial attacks, which was shown to increase after the adversarial attacks in an intelligible way, with accuracy scores ranging between 78.12% and 89.40%.
Keywords: sustainability; adversarial machine learning; network intrusion detection system; convolutional neural network; network security; APE_GAN++; deep learning (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/12/9801/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/12/9801/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:12:p:9801-:d:1174686
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().