EconPapers    
Economics at your fingertips  
 

Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm

Alaa A. Zaky (), Rania M. Ghoniem and F. Selim
Additional contact information
Alaa A. Zaky: Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrel-Sheikh 33511, Egypt
Rania M. Ghoniem: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
F. Selim: Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrel-Sheikh 33511, Egypt

Sustainability, 2023, vol. 15, issue 13, 1-16

Abstract: The proton exchange membrane fuel cell (PEMFC) is a green energy converter that is based on the chemical reaction process. The behavior of this system can change with time due to aging and operating conditions. Knowing the current state of this system requires an accurate model, and an exact PEMFC model requires precise parameters. These parameters should be identified and used to properly fit the polarization curve in order to effectively replicate the PEMFC behavior. This work suggests a precise unknown PEMFC parameter extraction based on a new metaheuristic optimization algorithm called the modified bald eagle search algorithm (mBES). The mBES is an optimization algorithm based on the principles of bald eagle behavior that combines local search and global search to achieve a balance between the exploration and exploitation of search spaces. It is a powerful and efficient technique for optimization problems where accurate and near-optimal solutions are desired. To approve the accuracy of the proposed identification approach, the proposed algorithm is compared to the following metaheuristic algorithms: bald eagle search algorithm (BES), artificial ecosystem-based optimization (AEO), leader Harris Hawk’s optimization (LHHO), rain optimization algorithm (ROA), sine cosine algorithm (SCA), and salp swarm algorithm (SSA). This evaluation process is applied to two commercialized PEMFC stacks: BCS 500 W PEMFC and Avista SR-12 PEM. The extracted parameters’ accuracy is measured as the sum of square errors (SSE) between the results produced by the optimizer and the experimental data in the objective function. As a result, the proposed PEMFC optimizing model outperforms the comparison models in terms of system correctness and convergence. The proposed extraction strategy, mBES, obtained the best results, with a fitness value of 0.011364 for the 500 W BCS and 0.035099 for the Avista SR-12 500 W PEMFC.

Keywords: PEMFC; parameter identification; bald eagle optimization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/13/10590/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/13/10590/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:13:p:10590-:d:1187530

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10590-:d:1187530