Evaluation and Design of Parameterized Dynamic Daylighting for Large-Space Buildings
Hao Hu,
Hui Zhang (),
Li Wang and
Zikang Ke
Additional contact information
Hao Hu: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Hui Zhang: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Li Wang: Zhongnan Architectural Design Institute Co., Ltd., Wuhan 430061, China
Zikang Ke: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Sustainability, 2023, vol. 15, issue 14, 1-28
Abstract:
This study aimed to promote the use of natural lighting in building designs to create a good lighting environment and to save energy. Dynamic daylight evaluation and analysis have become hot research topics due to the influence of outdoor light climate changes that occur throughout the season and over a period of time. However, there are certain gaps in the application of dynamic daylight evaluation for large-space buildings. In China, static daylight evaluation is mainly used to assess the actual daylighting performance of buildings. The Hangzhou E-sports Center in China was selected as the study object in this research, and dynamic daylight simulations were conducted using Rhino + Grasshopper and Ladybug + Honeybee for different representative days in each season and in each measurement zone. Spatial daylight autonomy (sDA) and useful daylight illuminance (UDI) were used as the dynamic daylight evaluation indicators, and a parameterized dynamic daylight evaluation method was proposed for evaluating the design scheme. By comparing the initial and optimized design schemes, the results showed the following: (1) the optimized scheme increased the ratio of area and time within the UDI 100–2000 lux range, and areas with an sDA >300 lux accounted for over 55% of the primary use areas, indicating a significant improvement in the daylighting quality of the large space; (2) the daylighting quality of the large space building showed seasonal changes, with the best daylighting quality occurring during the summer solstice and the worst occurring on the winter solstice, while the daylighting quality was similar during the spring and autumn equinoxes; (3) the dynamic evaluation metrics facilitated the identification of daylighting issues in large-scale buildings more effectively; (4) the parameterized method proposed in this study can solve the cumbersome process of daylight simulation and is more conducive to the adjustment and optimization of design schemes by designers. The parameterized dynamic daylight evaluation method proposed in this study provides references and ideas for the design and research of daylighting in other large-space buildings.
Keywords: daylight; parametric design; dynamic daylighting evaluation; large-space building (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/14/10773/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/14/10773/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:14:p:10773-:d:1190175
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().