EconPapers    
Economics at your fingertips  
 

Impact of Urban Form at the Block Scale on Renewable Energy Application and Building Energy Efficiency

Peng Wu () and Yisheng Liu
Additional contact information
Peng Wu: School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
Yisheng Liu: School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

Sustainability, 2023, vol. 15, issue 14, 1-26

Abstract: Improving building energy efficiency and widespread application of renewable energy are key measures for achieving zero-emission development in the building sector in response to climate change. However, previous studies on buildings and renewable energy use have predominantly treated buildings as independent entities, overlooking the influence of urban morphology on both aspects. Conducting research on the impact of urban form on building energy consumption and renewable energy application at the block scale can contribute to more accurate predictions of renewable energy potential and building energy efficiency, thereby enhancing their synergistic relationship. In this context, this study proposes a methodology for building energy simulation and analysis of renewable energy potential in building clusters using the Grasshopper platform. Six typical residential building clusters in Beijing, selected based on the local climate zone system, are used as representative samples of urban forms at the block scale. Based on these samples, 30 building cluster prototypes have been constructed. By simulating the renewable energy potential and building energy consumption of these prototypes, the study analyzes the influence of urban form on both aspects. The results indicate that the heat island effect and obstruction effect between buildings are the main manifestations of urban form influence; in this case, the urban heat island effect can reduce the building heating energy consumption by 15.8% on average and increase the cooling energy consumption by up to 30%; the shading effect between buildings increases heating energy consumption by an average of 11.88% and reduces cooling energy consumption by 5.87%. These two factors have opposite effects on building energy efficiency and are correlated with urban form parameters, such as the sky view factor, street canyon height to street canyon width ratio, and floor area ratio. This study provides valuable insights for the application of renewable energy in buildings and the balance of energy supply and demand.

Keywords: urban form; building cluster prototypes; building energy use efficiency; renewable energy use; energy consumption simulation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/14/11062/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/14/11062/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:14:p:11062-:d:1194553

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11062-:d:1194553