EconPapers    
Economics at your fingertips  
 

Simulation and Machine Learning Investigation on Thermoregulation Performance of Phase Change Walls

Xin Xiao (), Qian Hu, Huansong Jiao, Yunfeng Wang and Ali Badiei ()
Additional contact information
Xin Xiao: College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Qian Hu: College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Huansong Jiao: College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Yunfeng Wang: Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650550, China
Ali Badiei: School of Engineering, University of Central Lancashire, Preston PR1 2HE, UK

Sustainability, 2023, vol. 15, issue 14, 1-22

Abstract: The outdoor thermal environment can be regarded as a significant factor influencing indoor thermal conditions. The application of phase change materials (PCMs) to the building envelope has the potential to improve the heat storage performance of building walls and, therefore, effectively regulate the temperature variations of the inner surfaces of walls. COMSOL Multiphysics software was adopted firstly to perform the simulations on the thermoregulation performance of phase change wall; the time duration of the temperature at the internal side maintained within the thermal comfort range was used as a quantitative evaluation index of the thermoregulation effects. It was revealed from the simulation results that the time durations of thermal comfort were extended to 5021 s and 4102 s, respectively, when the brick walls were filled with two types of composite PCMs, namely eutectic hydrate (EHS, Na 2 CO 3 ·10H 2 O and Na 2 HPO 4 ·12H 2 O with the ratio of 4∶6)/5 wt.% BN and EHS/5 wt.% BN/7.5 wt.% expanded graphite (EG), under the conditions of 18 °C ambient temperature and 60 °C heating temperature at the charging stage. Both of them were longer than 3011 s, which corresponds to a pure brick wall. EHS/5 wt.% BN/7.5 wt.% EG exhibited better leakage prevention performance and, therefore, was a candidate for actual application, in comparison with EHS/5 wt.% BN. Then, a machine learning training process focused on the temperature control effects of phase change wall was carried out using a BP neural network, where the heating surface and ambient temperature were used as input variables and the time duration of indoor thermal comfort was the output variable. Finally, the learning deviation between the raw data and the results obtained from machine learning was within 5%, indicating that machine learning can accurately predict the temperature control effects of the phase change wall. The results of the simulations and machine learning can provide information and guidance for the advantages and potentials of PCMs of hydrate salts when being applied to the building envelope. In addition, the accurate prediction of machine learning demonstrated its application prospects to the research of phase change walls.

Keywords: phase change wall; radiative heating; numerical simulation; machine learning (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/14/11365/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/14/11365/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:14:p:11365-:d:1199503

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11365-:d:1199503